当前位置:高中试题 > 数学试题 > 抛物线的定义与方程 > 以抛物线x2=16y的焦点为圆心,且与抛物线的准线相切的圆的方程为_________....
题目
题型:不详难度:来源:
以抛物线x2=16y的焦点为圆心,且与抛物线的准线相切的圆的方程为_________.
答案
x2+(y-4)2=64
解析
抛物线x2=16y的焦点为(0,4),准线方程为y=-4,故圆的圆心为(0,4),又圆与抛物线的准线相切,所以圆的半径r=4-(-4)=8,所以圆的方程为x2+(y-4)2=64.
核心考点
试题【以抛物线x2=16y的焦点为圆心,且与抛物线的准线相切的圆的方程为_________.】;主要考察你对抛物线的定义与方程等知识点的理解。[详细]
举一反三
如图,抛物线C1:y2=4x和圆C2:(x-1)2+y2=1,直线l经过C1的焦点F,依次交C1,C2于A,B,C,D四点,则·的值是   .

题型:不详难度:| 查看答案
已知直线y=-2上有一个动点Q,过点Q作直线l1垂直于x轴,动点P在l1上,且满足OP⊥OQ(O为坐标原点),记点P的轨迹为C.
(1)求曲线C的方程.
(2)若直线l2是曲线C的一条切线,当点(0,2)到直线l2的距离最短时,求直线l2的方程.
题型:不详难度:| 查看答案
如图,直线l:y=x+b与抛物线C:x2=4y相切于点A.

(1)求实数b的值.
(2)求以点A为圆心,且与抛物线C的准线相切的圆的方程.
题型:不详难度:| 查看答案
设x1,x2∈R,常数a>0,定义运算“*”:x1*x2=(x1+x2)2-(x1-x2)2,若x≥0,则动点P(x,)的轨迹是(  )
A.圆B.椭圆的一部分
C.双曲线的一部分D.抛物线的一部分

题型:不详难度:| 查看答案
已知点F(,0),直线l:x=-,点B是l上的动点,若过B垂直于y轴的直线与线段BF的垂直平分线交于点M,则点M的轨迹是(  )
A.双曲线B.椭圆
C.圆D.抛物线

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.