当前位置:高中试题 > 数学试题 > 抛物线 > 动点P与点F(1,0)的距离和它到直线l:x=-1的距离相等,记点P的轨迹为曲线C1,圆C2的圆心T是曲线C1上的动点,圆C2与y轴交于M,N两点,且|MN|=...
题目
题型:广东省模拟题难度:来源:
动点P与点F(1,0)的距离和它到直线l:x=-1的距离相等,记点P的轨迹为曲线C1,圆C2的圆心T是曲线C1上的动点,圆C2与y轴交于M,N两点,且|MN|=4。
(1)求曲线C1的方程;
(2)设点A(a,0)(a>2),若点A到点T的最短距离为a-1,试判断直线l与圆C2的位置关系,并说明理由。
答案

解:(1)设动点P的坐标为(x,y),依题意,得|PF|=|x+1|,即
化简得,
∴曲线C1的方程为
(2)设点T的坐标为,圆C2的半径为r,
∵ 点T是抛物线上的动点,
(),

∵a>2,∴a-2>0,则当时,|AT|取得最小值为, 
依题意得,两边平方得
解得:a=5或a=1(不合题意,舍去),
,即
∴圆的圆心T的坐标为
∵圆与y轴交于M,N两点,且|MN|=4,


∵点T到直线l的距离
∴直线l与圆相离。

核心考点
试题【动点P与点F(1,0)的距离和它到直线l:x=-1的距离相等,记点P的轨迹为曲线C1,圆C2的圆心T是曲线C1上的动点,圆C2与y轴交于M,N两点,且|MN|=】;主要考察你对抛物线等知识点的理解。[详细]
举一反三
已知椭圆C1和抛物线C2有公共焦点F(1,0),C1的中心和C2的顶点都在坐标原点,过点M(4,0)的直线l与抛物线C2分别相交于A,B两点。
(Ⅰ)写出抛物线C2的标准方程;
(Ⅱ)若,求直线l的方程;
(Ⅲ)若坐标原点O关于直线l的对称点P在抛物线C2上,直线l与椭圆C1有公共点,求椭圆C1的长轴长的最小值。
题型:北京期末题难度:| 查看答案
已知半圆x2+y2=4(y≥0),动圆与此半圆相切且与x轴相切,
(Ⅰ)求动圆圆心的轨迹,并画出其轨迹图形;
(Ⅱ)是否存在斜率为的直线l,它与(Ⅰ)中所得轨迹的曲线由左到右顺次交于A,B,C,D四点,且满足|AD|=2|BC|,若存在,求出l的方程;若不存在,说明理由。
题型:山东省模拟题难度:| 查看答案
已知以原点为顶点的抛物线C,焦点在x轴上,直线x-y=0与抛物线C交于A,B两点,若P(2,2)为AB的中点,则抛物线C的方程为(    )。
题型:陕西省模拟题难度:| 查看答案
已知抛物线G的顶点在原点,焦点在y轴正半轴上,点P(m,4)到其准线的距离等于5,
(Ⅰ)求抛物线G的方程;
( Ⅱ)如图,过抛物线G的焦点的直线依次与抛物线G及圆x2+(y-1)2=1交于A,C,D,B四点,试证明|AC|·
|BD|为定值;
(Ⅲ)过A,B分别作抛物线G的切线l1,l2,且l1,l2交于点M,试求△ACM与△BDM面积之和的最小值.
题型:福建省模拟题难度:| 查看答案
在平面直角坐标系xOy中,抛物线C的顶点在原点,焦点F的坐标为(1,0).
(Ⅰ)求抛物线C的标准方程;
(Ⅱ)设M,N是抛物线C的准线上的两个动点,且它们的纵坐标之积为-4,直线MO,NO与抛物线的交点分别为点A,B,求证:动直线AB恒过一个定点。
题型:江苏模拟题难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.