当前位置:高中试题 > 数学试题 > 双曲线的几何性质 > 已知双曲线C:x2a2-y2b2=1(a>0,b>0)的左、右焦点分别F1、F2,O为双曲线的中心,P是双曲线右支上异于顶点的任一点,△PF1F2的内切圆的圆心...
题目
题型:不详难度:来源:
已知双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右焦点分别F1、F2,O为双曲线的中心,P是双曲线右支上异于顶点的任一点,△PF1F2的内切圆的圆心为I,且⊙I与x轴相切于点A,过F2作直线PI的垂线,垂足为B,若e为双曲线的离心率,下面八个命题:
①△PF1F2的内切圆的圆心在直线x=b上;
②△PF1F2的内切圆的圆心在直线x=a上;
③△PF1F2的内切圆的圆心在直线OP上;
④△PF1F2的内切圆必通过点(a,0);
⑤|OB|=e|OA|;
⑥|OB|=|OA|;
⑦|OA|=e|OB|;
⑧|OA|与|OB|关系不确定.
其中正确的命题的代号是______.
答案
根据题意得F1(-c,0)、F2(c,0),
设△PF1F2的内切圆分别与PF1、PF2切于点A1、B1,与F1F2切于点A,
则|PA1|=|PB1|,|F1A1|=|F1A|,|F2B1|=|F2A|,
又点P在双曲线右支上,
所以|PF1|-|PF2|=2a,故|F1A|-|F2A|=2a,而|F1A|+|F2A|=2c,
设A点坐标为(x,0),
则由|F1A|-|F2A|=2a可得(x+c)-(c-x)=2a
解得x=a,则△PF1F2的内切圆必通过点(a,0),△PF1F2的内切圆的圆心在直线x=a上,
故②,④正确.
由于|OA|=a,在三角形PCF2中,由题意得,三角形PCF2是一个等腰三角形,PC=PF2
∴在三角形F1CF2中,有:
OB=
1
2
CF1=
1
2
(PF1-PC)=
1
2
(PF1-PF2)=
1
2
×2a=a.
∴|OB|=|OA|.⑥正确.
故答案为:②,④,⑥.
核心考点
试题【已知双曲线C:x2a2-y2b2=1(a>0,b>0)的左、右焦点分别F1、F2,O为双曲线的中心,P是双曲线右支上异于顶点的任一点,△PF1F2的内切圆的圆心】;主要考察你对双曲线的几何性质等知识点的理解。[详细]
举一反三
若一个椭圆与双曲线x2-
y2
3
=1
焦点相同,且过点(-


3
,1).
(Ⅰ)求这个椭圆的标准方程;
(Ⅱ)求这个椭圆的所有斜率为2的平行弦的中点轨迹方程.
题型:不详难度:| 查看答案
分别求适合下列条件圆锥曲线的标准方程:
(1)焦点为F1(0,-1)、F2(0,1)且过点M(
3
2
,1)
椭圆;
(2)与双曲线x2-
y2
2
=1
有相同的渐近线,且过点(2,2)的双曲线.
题型:不详难度:| 查看答案
求满足下列条件的双曲线的标准方程:
(1)已知双曲线的焦点F1,F2在x轴上,离心率为


2
,且过点(4,-


10)

(2)与双曲线
x2
9
-
y2
16
=1
有共同的渐近线,且经过点M(-3,2


3
)
题型:不详难度:| 查看答案
焦点为F(0,10),渐近线方程为4x±3y=0的双曲线的方程是(  )
A.
y2
64
-
x2
36
=1
B.
x2
9
-
y2
16
=1
C.
y2
9
-
x2
16
=1
D.
x2
64
-
y2
36
=1
题型:不详难度:| 查看答案
已知双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
的左右焦点分别为F1,F2,P为双曲线右支一的任意一点,若
|PF1|2
|PF2|
的最小值为8a,则双曲线离心率的取值范围是(  )
A.(0,+∞)B.(1,2]C.(1,


3
]
D.(1,3]
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.