当前位置:高中试题 > 数学试题 > 椭圆的定义与方程 > P为四棱锥S-ABCD的面SBC内一点,若动点P到平面abc的距离与到点S的距离相等,则动点P的轨迹是面SBC内(  )A.线段或圆的一部分B.双曲线或椭圆的一...
题目
题型:不详难度:来源:
P为四棱锥S-ABCD的面SBC内一点,若动点P到平面abc的距离与到点S的距离相等,则动点P的轨迹是面SBC内(  )
A.线段或圆的一部分
B.双曲线或椭圆的一部分
C.双曲线或抛物线的一部分
D.抛物线或椭圆的一部分
答案
∵四棱锥S-ABCD∴面SBC不垂直面ABC,过P作PD⊥面ABC于D,过D作DH⊥BC于H,连接PH,
可得BC⊥面DPH,所以BC⊥PH,故∠PHD为二面角S-BC-A的平面角令其为θ
则Rt△PGH中,|PD|:|PH|=sinθ(θ为S-BC-A的二面角).
又点P到平面ABC距离与到点S的距离相等,即|PS|=|PD|
∴|PS|:|PH|=sinθ≤1,即在平面SBC中,点P到定点S的距离与定直线BC的距离之比是一个常数sinθ,
面SBC不垂直面ABC,所以θ是锐角,故常数sinθ≤1
故由椭圆定义知P点轨迹为椭圆在面SBC内的一部分.
故选D.
核心考点
试题【P为四棱锥S-ABCD的面SBC内一点,若动点P到平面abc的距离与到点S的距离相等,则动点P的轨迹是面SBC内(  )A.线段或圆的一部分B.双曲线或椭圆的一】;主要考察你对椭圆的定义与方程等知识点的理解。[详细]
举一反三
曲线C上任一点到点F1(-4,0),F2(4,0)的距离之和为12.曲线C的左顶点为A,点P在曲线C上,且PA⊥PF2
(Ⅰ)求曲线C的方程;
(Ⅱ)求点P的坐标;
(Ⅲ)在y轴上求一点M,使M到曲线C上点的距离最大值为3


7
题型:不详难度:| 查看答案
已知F1、F2是椭圆C:
x2
25
+
y2
9
=1
的两个焦点,P为椭圆上一点,且∠F1PF2=90°,则△PF1F2的面积______.
题型:不详难度:| 查看答案
如图,把椭圆
x2
25
+
y2
16
=1
的长轴AB分成8等份,过每个分点作x轴的垂线交椭圆的上半部分于P1,P2,P3,P4,P5,P6,P7七个点,F是椭圆的一个焦点,则|P1F|+|P2F|+|P3F|+|P4F|+|P5F|+|P6F|+|P7F|=______.魔方格
题型:不详难度:| 查看答案
直线l过椭圆
x2
4
+
y2
3
=1的右焦点F2
并与椭圆交与A、B两点,则△ABF1的周长是(  )
A.4B.6C.8D.16
题型:不详难度:| 查看答案
已知△ABC的周长为20,且顶点B (0,-4),C (0,4),则顶点A的轨迹方程是(  )
A.
x2
36
+
y2
20
=1
(x≠0)
B.
x2
20
+
y2
36
=1
(x≠0)
C.
x2
6
+
y2
20
=1
(x≠0)
D.
x2
20
+
y2
6
=1
(x≠0)
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.