当前位置:高中试题 > 数学试题 > 椭圆的定义与方程 > 过椭圆的右焦点且垂直于轴的直线与椭圆交于两点,以为直径的圆恰好过左焦点,则椭圆的离心率等于              。...
题目
题型:不详难度:来源:
过椭圆的右焦点且垂直于轴的直线与椭圆交于两点,以为直径的圆恰好过左焦点,则椭圆的离心率等于              
答案

解析

核心考点
试题【过椭圆的右焦点且垂直于轴的直线与椭圆交于两点,以为直径的圆恰好过左焦点,则椭圆的离心率等于              。】;主要考察你对椭圆的定义与方程等知识点的理解。[详细]
举一反三
椭圆的中心在原点,焦点F在轴上,离心率为,点到F点的距离为,(1)求椭圆的方程;
(2)直线与椭圆交于不同的两点M、N两点,若,求实数的取值范围。
题型:不详难度:| 查看答案

请阅读以下材料,然后解决问题:
①设椭圆的长半轴长为a短半轴长为b,则椭圆的面积为ab
②我们把由半椭圆C1+="1" (x≤0)与半椭圆C2+="1" (x≥0)合成的曲线称作“果圆”,其中=+a>0,b>c>0
如右上图,设点F0F1F2是相应椭圆的焦点,A1A2B1B2是“果圆”与xy轴的交点,若△F0 F1 F2是边长为1的等边三角形,则上述“果圆”的面积为                               
题型:不详难度:| 查看答案


如图,已知点,且的内切圆方程为.
(1)  求经过三点的椭圆标准方程;
(2)  过椭圆上的点作圆的切线,求切线长最短时的点的坐标和切线长。
题型:不详难度:| 查看答案

椭圆的一焦点与短轴两顶点组成一个等边三角形,则椭圆的离心率为(    )
A.B.C.D.

题型:不详难度:| 查看答案

(本题满分14分)已知直角坐标平面内点到点与点的距离之和为
(Ⅰ)试求点的轨迹的方程;
(Ⅱ)若斜率为的直线与轨迹交于两点,点为轨迹上一点,记直线的斜率为,直线的斜率为,试问:是否为定值?请证明你的结论.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.