当前位置:高中试题 > 数学试题 > 椭圆的定义与方程 > (示范高中)如图,已知椭圆(a>b>0)的离心率,过点和的直线与原点的距离为.(1)求椭圆的方程;(2)已知定点,若直线与椭圆交于、两点.问:是否存在的值,使以...
题目
题型:不详难度:来源:
(示范高中)如图,已知椭圆(a>b>0)的离心率,过点的直线与原点的距离为
(1)求椭圆的方程;
(2)已知定点,若直线与椭圆交于两点.问:是否存在的值,使以为直径的圆过点?请说明理由.
 
答案

(1)
(2)
解析

(示范高中)解:(1)直线AB方程为:bx-ay-ab=0.
  依题意 解得 
∴ 椭圆方程为.                  4分
(2)假若存在这样的k值,
  .6分
 ∴     ①
  设,则   ②   8分
 而
要使以CD为直径的圆过点E(-1,0),当且仅当CE⊥DE时,则,即 ∴10分
将②式代入③整理解得.    
经验证,,使①成立.   
综上可知,存在,使得以CD为直径的圆过点E.   12分
核心考点
试题【(示范高中)如图,已知椭圆(a>b>0)的离心率,过点和的直线与原点的距离为.(1)求椭圆的方程;(2)已知定点,若直线与椭圆交于、两点.问:是否存在的值,使以】;主要考察你对椭圆的定义与方程等知识点的理解。[详细]
举一反三
离心率为黄金比的椭圆称为“优美椭圆”.设
是优美椭圆,F、A分别是它的左焦点和右顶点,B是它的短轴的一个顶点,则
等于(   )
A.B.C.D.

题型:不详难度:| 查看答案
若A点坐标为(1,1),F1是5x2+9y2=45椭圆的左焦点,点P是椭圆的动点,则|PA|+|P F1|的最小值是_______    ___
题型:不详难度:| 查看答案
(本小题满分12分)
已知椭圆的中心在坐标原点,焦点在轴上,椭圆的短轴端点和焦点所组成的四边形为正方形,短轴长为2.
(1)求椭圆的方程;
(2)设直线且与椭圆相交于A,B两点,当P是AB的中点时,求直线的方程.
题型:不详难度:| 查看答案
(本题满分14分)
已知椭圆,直线,F为椭圆的右焦点,M为椭圆上任意一点,记M到直线L的距离为d.

(Ⅰ) 求证:为定值;
(Ⅱ) 设过右焦点F的直线m的倾斜角为,m交椭圆于A、B两点,且,求的值。
题型:不详难度:| 查看答案
(本小题满分12分)
已知椭圆的中心在坐标原点,焦点在轴上,短轴长为2,且两个焦点和短轴的两个端点恰为一个正方形的顶点.过右焦点轴不垂直的直线交椭圆于两点.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)在线段上是否存在点,使得以为邻边的平行四边形是菱形? 若存在,求出的取值范围;若不存在,请说明理由.

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.