当前位置:高中试题 > 数学试题 > 椭圆的定义与方程 > 如图,椭圆的离心率为,直线和所围成的矩形ABCD的面积为8.(Ⅰ)求椭圆M的标准方程;(Ⅱ) 设直线与椭圆M有两个不同的交点与矩形ABCD有两个不同的交点.求的...
题目
题型:不详难度:来源:
如图,椭圆的离心率为,直线所围成的矩形ABCD的面积为8.

(Ⅰ)求椭圆M的标准方程;
(Ⅱ) 设直线与椭圆M有两个不同的交点与矩形ABCD有两个不同的交点.求的最大值及取得最大值时m的值.
答案
(I)     (II) 和0时,取得最大值
解析
(I)……①
矩形ABCD面积为8,即……②
由①②解得:,∴椭圆M的标准方程是.
(II)
,则
.
.
点时,,当点时,.
①当时,有

其中,由此知当,即时,取得最大值.
②由对称性,可知若,则当时,取得最大值.
③当时,
由此知,当时,取得最大值.
综上可知,当和0时,取得最大值
核心考点
试题【如图,椭圆的离心率为,直线和所围成的矩形ABCD的面积为8.(Ⅰ)求椭圆M的标准方程;(Ⅱ) 设直线与椭圆M有两个不同的交点与矩形ABCD有两个不同的交点.求的】;主要考察你对椭圆的定义与方程等知识点的理解。[详细]
举一反三
(本题满分12分)已知椭圆,过中心O作互相垂直的线段OA、OB与椭圆交于A、B, 求:
(1)的值
(2)判定直线AB与圆的位置关系
(文科)(3)求面积的最小值
(理科)(3)求面积的最大值
题型:不详难度:| 查看答案
(12分) 已知A(m,o),2,椭圆=1,p在椭圆上移动,求的最小值.
题型:不详难度:| 查看答案
已知椭圆+ =1(a>b>c>0,a2=b2+c2)的左右焦点分别为F1,F2,若以F2为圆心,b―c为半径作圆F2,过椭圆上一点P作此圆的切线,切点为T,且|PT|的最小值为(a―c),则椭圆的离心率e的取值范围是            .
题型:不详难度:| 查看答案
(本小题满分l2分)已知椭圆的的右顶点为A,离心率,过左焦点作直线与椭圆交于点P,Q,直线AP,AQ分别与直线交于点
(Ⅰ)求椭圆的方程;
(Ⅱ)证明以线段为直径的圆经过焦点
题型:不详难度:| 查看答案
设椭圆C1的离心率为5/13,焦点在x轴上且长轴长为26.若曲线C2上的点到椭圆C1的两个焦点的距离的差的绝对值等于8,则曲线C2的标准方程为
A.(x/4)2-(y/3)2=1B.(x/13)2-(y/5)2=1
C.(x/3)2-(y/4)2=1D.(x/13)2-(y/12)2=1

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.