当前位置:高中试题 > 数学试题 > 椭圆的定义与方程 > 已知椭圆的焦点在轴上,离心率,且经过点. (Ⅰ)求椭圆的标准方程;(Ⅱ)斜率为的直线与椭圆相交于两点,求证:直线与的倾斜角互补....
题目
题型:不详难度:来源:
已知椭圆的焦点在轴上,离心率,且经过点.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)斜率为的直线与椭圆相交于两点,求证:直线的倾斜角互补.
答案
(1) 见证明.
解析

试题分析:(Ⅰ)椭圆有两个独立量,所以需要建立两个方程①利用离心率 ②利用点 在圆上,然后解方程即可,(Ⅱ)建立直线方程后与椭圆方程联立利用韦达定理求出两根之和 两根之积, ,再把两条直线的斜率之和, 来表示,整理即可.
试题解析:(Ⅰ)设椭圆的方程为:,(
,得                          2分
∵椭圆经过点,则,解得                      3分
∴椭圆的方程为                                     4分
(Ⅱ)设直线方程为.
联立得:
,得
                                      6分


10分
                              11分
,所以,直线的倾斜角互补.                    12分
核心考点
试题【已知椭圆的焦点在轴上,离心率,且经过点. (Ⅰ)求椭圆的标准方程;(Ⅱ)斜率为的直线与椭圆相交于两点,求证:直线与的倾斜角互补.】;主要考察你对椭圆的定义与方程等知识点的理解。[详细]
举一反三
已知得顶点分别是离心率为的圆锥曲线的焦点,顶点在该曲线上,一同学已正确地推得,当时有 ,类似地,当时,有               .
题型:不详难度:| 查看答案
已知椭圆的右焦点为 为椭圆的上顶点,为坐标原点,且两焦点和短轴的两端构成边长为的正方形.
(1)求椭圆的标准方程;
(2)是否存在直线交与椭圆于,且使,使得的垂心,若存在,求出点的坐标,若不存在,请说明理由.
题型:不详难度:| 查看答案
已知抛物线的焦点以及椭圆的上、下焦点及左、右顶点均在圆上.
(1)求抛物线和椭圆的标准方程;
(2)过点的直线交抛物线两不同点,交轴于点,已知,则
是否为定值?若是,求出其值;若不是,说明理由.
题型:不详难度:| 查看答案
在平面直角坐标系中,已知椭圆的左焦点为,左、右顶点分别为,上顶点为,过三点作圆  
(Ⅰ)若线段是圆的直径,求椭圆的离心率;
(Ⅱ)若圆的圆心在直线上,求椭圆的方程;
(Ⅲ)若直线交(Ⅱ)中椭圆于,交轴于,求的最大值  
题型:不详难度:| 查看答案
已知是椭圆的左、右焦点,且离心率,点为椭圆上的一个动点,的内切圆面积的最大值为.
(1) 求椭圆的方程;
(2) 若是椭圆上不重合的四个点,满足向量共线,
线,且,求的取值范围.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.