当前位置:高中试题 > 数学试题 > 椭圆的定义与方程 > 已知椭圆C:=1(a>b>0)的两个焦点分别为F1,F2,离心率为,且过点(2,).(1)求椭圆C的标准方程;(2)M,N,P,Q是椭圆C上的四个不...
题目
题型:不详难度:来源:
已知椭圆C:=1(a>b>0)的两个焦点分别为F1,F2,离心率为,且过点(2,).
(1)求椭圆C的标准方程;
(2)M,N,P,Q是椭圆C上的四个不同的点,两条都不和x轴垂直的直线MN和PQ分别过点F1,F2,且这两条直线互相垂直,求证:为定值.
答案
(1)=1(2)
解析
(1)由已知,e=,所以=1-e2,所以a2=2b2.
所以C:=1,即x2+2y2=2b2.
因为椭圆C过点(2,),代入椭圆方程得b2=4,所以a2=8.
所以椭圆C的标准方程为=1.
(2)证明:由(1)知椭圆的焦点坐标为F1(-2,0),F2(2,0).
根据题意,可设直线MN的方程为y=k(x+2),
由于直线MN与直线PQ互相垂直,则直线PQ的方程为y=-(x-2).
设M(x1,y1),N(x2,y2).
由方程组消去y得(2k2+1)x2+8k2x+8k2-8=0.
则x1+x2,x1x2.
所以|MN|=.同理可得|PQ|=.
所以
核心考点
试题【已知椭圆C:=1(a>b>0)的两个焦点分别为F1,F2,离心率为,且过点(2,).(1)求椭圆C的标准方程;(2)M,N,P,Q是椭圆C上的四个不】;主要考察你对椭圆的定义与方程等知识点的理解。[详细]
举一反三
在平面直角坐标系xOy中,椭圆C的中心为原点,焦点F1,F2在x轴上,离心率为.过F1的直线交椭圆C于A,B两点,且△ABF2的周长为8.过定点M(0,3)的直线l1与椭圆C交于G,H两点(点G在点M,H之间).
(1)求椭圆C的方程;
(2)设直线l1的斜率k>0,在x轴上是否存在点P(m,0),使得以PG,PH为邻边的平行四边形为菱形?如果存在,求出m的取值范围;如果不存在,请说明理由.
题型:不详难度:| 查看答案
已知椭圆的中心为原点,离心率,其一个焦点在抛物线的准线上,若抛物线与直线相切.
(1)求该椭圆的标准方程;
(2)当点在椭圆上运动时,设动点的运动轨迹为.若点满足:,其中上的点,直线的斜率之积为,试说明:是否存在两个定点,使得为定值?若存在,求的坐标;若不存在,说明理由.
题型:不详难度:| 查看答案
动点到定点与到定直线,的距离之比为
(1)求的轨迹方程;
(2)过点的直线(与x轴不重合)与(1)中轨迹交于两点.探究是否存在一定点E(t,0),使得x轴上的任意一点(异于点E、F)到直线EM、EN的距离相等?若存在,求出t的值;若不存在,说明理由.
题型:不详难度:| 查看答案
已知两个同心圆,其半径分别为为小圆上的一条定直径,则以大圆的切线为准线,且过两点的抛物线焦点的轨迹方程为(      )(以线段所在直线为轴,其中垂线为轴建立平面直角坐标系)
A.B.
C.D.

题型:不详难度:| 查看答案
已知命题:方程所表示的曲线为焦点在轴上的椭圆;命题:实数满足不等式.
(1)若命题为真,求实数的取值范围;
(2)若命题是命题的充分不必要条件,求实数的取值范围.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.