当前位置:高中试题 > 数学试题 > 椭圆的定义与方程 > 设椭圆+=1(a>b>0)的左焦点为F,离心率为,过点F且与x轴垂直的直线被椭圆截得的线段长为.(1)求椭圆的方程;(2)设A,B分别为椭圆的左、右...
题目
题型:不详难度:来源:
设椭圆+=1(a>b>0)的左焦点为F,离心率为,过点F且与x轴垂直的直线被椭圆截得的线段长为.
(1)求椭圆的方程;
(2)设A,B分别为椭圆的左、右顶点,过点F且斜率为k的直线与椭圆交于C,D两点.若·+·=8,求k的值.
答案
(1) +=1   (2) k=±
解析

解:(1)设F(-c,0),由=,知a=c.
过点F且与x轴垂直的直线为x=-c,
代入椭圆方程有+=1,
解得y=±,
于是=,解得b=,
又a2-c2=b2,从而a=,c=1,
所以椭圆的方程为+=1.
(2)设点C(x1,y1),D(x2,y2),
由F(-1,0)得直线CD的方程为y=k(x+1).
由方程组消去y,整理得(2+3k2)x2+6k2x+3k2-6=0,
则x1+x2=-,x1x2=.
因为A(-,0),B(,0),
所以·+·=(x1+,y1)·(-x2,-y2)+(x2+,y2)·(-x1,-y1)=6-2x1x2-2y1y2=6-2x1x2-2k2(x1+1)(x2+1)
=6-(2+2k2)x1x2-2k2(x1+x2)-2k2=6+.
由已知得6+=8,解得k=±.
核心考点
试题【设椭圆+=1(a>b>0)的左焦点为F,离心率为,过点F且与x轴垂直的直线被椭圆截得的线段长为.(1)求椭圆的方程;(2)设A,B分别为椭圆的左、右】;主要考察你对椭圆的定义与方程等知识点的理解。[详细]
举一反三
已知椭圆C:+=1(a>b>0)的一个顶点为A(2,0),离心率为.直线y=k(x-1)与椭圆C交于不同的两点M,N.
(1)求椭圆C的方程;
(2)当△AMN的面积为时,求k的值.
题型:不详难度:| 查看答案
设椭圆+=1(a>b>0)的左,右焦点分别为F1,F2,点P(a,b)满足|PF2|=|F1F2|.
(1)求椭圆的离心率e;
(2)设直线PF2与椭圆相交于A,B两点.若直线PF2与圆(x+1)2+(y-)2=16相交于M,N两点,且|MN|=|AB|,求椭圆的方程.
题型:不详难度:| 查看答案
已知椭圆+=1的两个焦点是F1、F2,点P在该椭圆上,若|PF1|-|PF2|=2,则△PF1F2的面积是    .
题型:不详难度:| 查看答案
已知点F1、F2分别是椭圆x2+2y2=2的左、右焦点,点P是该椭圆上的一个动点,则的最小值是    .
题型:不详难度:| 查看答案
椭圆+=1上有两个动点P、Q,E(3,0),EP⊥EQ,则·的最小值为(  )
A.6B.3-C.9D.12-6

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.