当前位置:高中试题 > 数学试题 > 椭圆的定义与方程 > 在平面直角坐标系xOy中,已知定点A(-4,0)、B(4,0),动点P与A、B连线的斜率之积为-.(1)求点P的轨迹方程;(2)设点P的轨迹与y轴负半轴交于点C...
题目
题型:不详难度:来源:
在平面直角坐标系xOy中,已知定点A(-4,0)、B(4,0),动点P与A、B连线的斜率之积为-.
(1)求点P的轨迹方程;
(2)设点P的轨迹与y轴负半轴交于点C.半径为r的圆M的圆心M在线段AC的垂直平分线上,且在y轴右侧,圆M被y轴截得的弦长为r.
(ⅰ)求圆M的方程;
(ⅱ)当r变化时,是否存在定直线l与动圆M均相切?如果存在,求出定直线l的方程;如果不存在,说明理由.
答案
(1)=1(x≠±4)(2)(ⅰ)+(y-r-3)2=r2.(ⅱ)y=3和4x+3y-9=0与动圆M均相切
解析
(1)设P(x,y),则直线PA、PB的斜率分别为k1、k2.
由题意知·=-,即=1(x≠±4).
所以动点P的轨迹方程是=1(x≠±4).
(2)(ⅰ)由题意C(0,-2),A(-4,0),
所以线段AC的垂直平分线方程为y=2x+3.
设M(a,2a+3)(a>0),则圆M的方程为(x-a)2+(y-2a-3)2=r2.
圆心M到y轴的距离d=a,由r2=d2,得a=.
所以圆M的方程为+(y-r-3)2=r2.
(ⅱ)假设存在定直线l与动圆M均相切.当定直线的斜率不存在时,不合题意.
设直线l:y=kx+b,则=r对任意r>0恒成立.
,得r2+(k-2)(b-3)r+(b-3)2=(1+k2)r2.
所以解得
所以存在两条直线y=3和4x+3y-9=0与动圆M均相切
核心考点
试题【在平面直角坐标系xOy中,已知定点A(-4,0)、B(4,0),动点P与A、B连线的斜率之积为-.(1)求点P的轨迹方程;(2)设点P的轨迹与y轴负半轴交于点C】;主要考察你对椭圆的定义与方程等知识点的理解。[详细]
举一反三
如图,椭圆E:=1(a>b>0)的左焦点为F1,右焦点为F2,离心率e=.过F1的直线交椭圆于A、B两点,且△ABF2的周长为8.

(1)求椭圆E的方程;
(2)设动直线l:y=kx+m与椭圆E有且只有一个公共点P,且与直线x=4相交于点Q.试探究:在坐标平面内是否存在定点M,使得以PQ为直径的圆恒过点M?若存在,求出点M的坐标;若不存在,说明理由.
题型:不详难度:| 查看答案
已知椭圆E:+y2=1(a>1)的上顶点为M(0,1),两条过M的动弦MA、MB满足MA⊥MB.
(1)当坐标原点到椭圆E的准线距离最短时,求椭圆E的方程;
(2)若Rt△MAB面积的最大值为,求a;
(3)对于给定的实数a(a>1),动直线AB是否经过一定点?如果经过,求出定点坐标(用a表示);反之,说明理由.
题型:不详难度:| 查看答案
设A1、A2与B分别是椭圆E:=1(a>b>0)的左、右顶点与上顶点,直线A2B与圆C:x2+y2=1相切.
(1)求证:=1;
(2)P是椭圆E上异于A1、A2的一点,若直线PA1、PA2的斜率之积为-,求椭圆E的方程;
(3)直线l与椭圆E交于M、N两点,且·=0,试判断直线l与圆C的位置关系,并说明理由.
题型:不详难度:| 查看答案
已知曲线C上动点P(x,y)到定点F1(,0)与定直线l1∶x=的距离之比为常数.
(1)求曲线C的轨迹方程;
(2)以曲线C的左顶点T为圆心作圆T:(x+2)2+y2=r2(r>0),设圆T与曲线C交于点M与点N,求·的最小值,并求此时圆T的方程.
题型:不详难度:| 查看答案
已知椭圆C的方程为=1(a>b>0),双曲线=1的两条渐近线为l1、l2,过椭圆C的右焦点F作直线l,使l⊥l1.又l与l2交于P点,设l与椭圆C的两个交点由上至下依次为A、B(如图).

(1)当l1与l2夹角为60°,双曲线的焦距为4时,求椭圆C的方程;
(2)当=λ,求λ的最大值.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.