当前位置:高中试题 > 数学试题 > 椭圆的定义与方程 > F1,F2是椭圆+=1的左、右两焦点,P为椭圆的一个顶点,若△PF1F2是等边三角形,则a2=________....
题目
题型:不详难度:来源:
F1,F2是椭圆=1的左、右两焦点,P为椭圆的一个顶点,若△PF1F2是等边三角形,则a2=________.
答案
12
解析
∵△PF1F2是等边三角形,
∴2c=a.
又∵b=3,∴a2=12.
核心考点
试题【F1,F2是椭圆+=1的左、右两焦点,P为椭圆的一个顶点,若△PF1F2是等边三角形,则a2=________.】;主要考察你对椭圆的定义与方程等知识点的理解。[详细]
举一反三
已知P为椭圆=1上的一点,M,N分别为圆(x+3)2+y2=1和圆(x-3)2+y2=4上的点,则|PM|+|PN|的最小值为________.
题型:不详难度:| 查看答案
若椭圆=1的焦点在x轴上,过点(1,)作圆x2+y2=1的切线,切点分别为A,B,直线AB恰好经过椭圆的右焦点和上顶点,则椭圆方程是________.
题型:不详难度:| 查看答案
设A,B分别为椭圆=1(a>b>0)的左、右顶点,(1,)为椭圆上一点,椭圆长半轴长等于焦距.
(1)求椭圆的方程;
(2)设P(4,x)(x≠0),若直线AP,BP分别与椭圆相交于异于A,B的点M,N,求证:∠MBN为钝角.
题型:不详难度:| 查看答案
设椭圆E:=1(a>b>0)的上焦点是F1,过点P(3,4)和F1作直线PF1交椭圆于A,B两点,已知A().
(1)求椭圆E的方程;
(2)设点C是椭圆E上到直线PF1距离最远的点,求C点的坐标.
题型:不详难度:| 查看答案
已知F1,F2是椭圆C:=1(a>b>0)的左、右焦点,点P(-,1)在椭圆上,线段PF2与y轴的交点M满足=0.
(1)求椭圆C的方程;
(2)椭圆C上任一动点N(x0,y0)关于直线y=2x的对称点为N1(x1,y1),求3x1-4y1的取值范围.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.