当前位置:高中试题 > 数学试题 > 椭圆 > 已知F1、F2是椭圆x24+y2=1的两个焦点,P是该椭圆上的一个动点,则|PF1|•|PF2|的最大值是______....
题目
题型:不详难度:来源:
已知F1、F2是椭圆
x2
4
+y2=1的两个焦点,P是该椭圆上的一个动点,则|PF1|•|PF2|的最大值是______.
答案
由焦半径公式|PF1|=a-ex,|PF2|=a+ex
|PF1|•|PF2|=(a-ex)(a+ex)=a2-e2x2
则|PF1|•|PF2|的最大值是a2=4.
答案:4.
核心考点
试题【已知F1、F2是椭圆x24+y2=1的两个焦点,P是该椭圆上的一个动点,则|PF1|•|PF2|的最大值是______.】;主要考察你对椭圆等知识点的理解。[详细]
举一反三
过椭圆C:
x2
6
+
y2
2
=1
的右焦点F作斜率为k(k>0)的直线l与椭圆交于A、B两点,且坐标原点O到直线l的距离d满足:0<d<
2


3
3
.

(I)证明点A和点B分别在第一、三象限;
(II)若


OA


OB
>-
4
3
,求k
的取值范围.
题型:不详难度:| 查看答案
椭圆ax2+by2=1与直线y=1-x交于A、B两点,过原点与线段AB中点的直线的斜率为


3
2
,则
a
b
的值为______.
题型:不详难度:| 查看答案
已知椭圆C:
x2
a2
+
y2
b2
=1 (a>b>0)
的离心率e=


2
2
,左、右焦点分别为F1、F2,点P(2, 


3
)
满足F2在线段PF1的中垂线上.
(1)求椭圆C的方程;
(2)如果圆E:(x-
1
2
)2+y2=r2
被椭圆C所覆盖,求圆的半径r的最大值.
题型:不详难度:| 查看答案
设F是椭圆
x2
7
+
y2
6
=1
的右焦点,且椭圆上至少有21个不同的点Pi(i=1,2,3,…),使|FP1|,|FP2|,|FP3|,…组成公差为d的等差数列,则d的取值范围为______.
题型:湖南难度:| 查看答案
设A、B是椭圆3x2+y2=λ上的两点,点N(1,3)是线段AB的中点,线段AB的垂直平分线与椭圆相交于C、D两点.
(Ⅰ)确定λ的取值范围,并求直线AB的方程;
(Ⅱ)试判断是否存在这样的λ,使得A、B、C、D四点在同一个圆上?并说明理由.
题型:湖北难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.