当前位置:高中试题 > 数学试题 > 椭圆 > 已知椭圆的一个焦点在直线l:x=1上,离心率e=。设P、Q为椭圆上不同的两点,且弦PQ的中点T在直线l上,点R(,0),(1)求椭圆的方程;(2)试证:对于所有...
题目
题型:同步题难度:来源:
已知椭圆的一个焦点在直线l:x=1上,离心率e=。设P、Q为椭圆上不同的两点,且弦PQ的中点T在直线l上,点R(,0),
(1)求椭圆的方程;
(2)试证:对于所有满足条件的P、Q,恒有|RP|=|RQ|。
答案
解:(1)椭圆的一个焦点在直线l:x=1上,所以c=1,
又因为离心率e=,即=
所以a=2,从而b2=3,
所以椭圆的方程为
(2)证明:设T(1,y0),P(x1,y1),Q(x2,y2),
=(,y0),=(x2-x1,y2-y1),=(x2-x1)+y0(y2-y1).
又因为P、Q都在椭圆上,
所以
两式相减得(x1-x2)(x1+x2)+(y1-y2)(y1+y2)=0,
因为点T是PQ的中点,所以x1+x2=2,y1+y2=2y0
于是(x1-x2)+y0(y1-y2)=0,
所以(x1-x2)+y0(y1-y2)=0,
=0,所以RT⊥PQ,
即RT是线段PQ的垂直平分线,所以恒有|RP|=|RQ|。
核心考点
试题【已知椭圆的一个焦点在直线l:x=1上,离心率e=。设P、Q为椭圆上不同的两点,且弦PQ的中点T在直线l上,点R(,0),(1)求椭圆的方程;(2)试证:对于所有】;主要考察你对椭圆等知识点的理解。[详细]
举一反三
长为3的线段AB的端点A,B分别在x,y轴上移动,动点C(x,y)满足=2,则动点C的轨迹方程是(    )。
题型:同步题难度:| 查看答案
已知椭圆E的中心在坐标原点,焦点在x轴上,离心率为,且椭圆E上一点到两个焦点距离之和为4,l1,l2是过点P(0,2)且互相垂直的两条直线,l1交E于A,B两点,l2交E于C,D两点,AB,CD的中点分别为M,N,
(1)求椭圆E的方程;
(2)求l1的斜率k的取值范围;
(3)求的取值范围.
题型:同步题难度:| 查看答案
如图,过圆x2+y2=4与x轴的两个交点A、B,作圆的切线AC、BD,再过圆上任意一点H作圆的切线,交AC、BD于C、D两点,设AD、BC的交点为R,
(1)求动点R的轨迹E的方程;
(2)过曲线E的右焦点F作直线l交曲线E于M、N两点,交y轴于P点,且记12,求证:λ12为定值.
题型:同步题难度:| 查看答案
设椭圆C:的离心率为e=,点A是椭圆上的一点,且点A到椭圆C两焦点的距离之和为4。
(1)求椭圆C的方程;
(2)椭圆C上一动点P(x0,y0)关于直线y=2x的对称点为P1 (x1,y1),求3x1-4y1的取值范围.
题型:专项题难度:| 查看答案
已知平面上一定点C(-1,0)和一定直线l:x=-4,P为该平面上一动点,作PQ⊥l,垂足为Q,且
(1)求点P的轨迹方程;
(2)点O是坐标原点,过点C的直线与点P的轨迹交于A,B两点,求的取值范围。
题型:专项题难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.