当前位置:高中试题 > 数学试题 > 椭圆 > 已知椭圆x2a2+y2b2=1(a>b>0)的右焦点为F(2,0),M为椭圆的上顶点,O为坐标原点,且△MOF是等腰直角三角形.(Ⅰ)求椭圆的方程;(Ⅱ)过点M...
题目
题型:包头三模难度:来源:
已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的右焦点为F(2,0),M为椭圆的上顶点,O为坐标原点,且△MOF是等腰直角三角形.
(Ⅰ)求椭圆的方程;
(Ⅱ)过点M分别作直线MA,MB交椭圆于A,B两点,设两直线的斜率分别为k1,k2,且k1+k2=8,证明:直线AB过定点(-
1
2
 , -2
).
答案
(Ⅰ)由△MOF是等腰直角三角形,得c2=b2=4,a2=8,
故椭圆方程为:
x2
8
+
y2
4
=1.
(Ⅱ)证明:(1)若直线AB的斜率存在,设AB的方程为:y=kx+m,依题意得m≠±2,
设A(x1,y1),B(x2,y2),





x2
8
+
y2
4
=1
y=kx+m
,得(1+2k2)x2+4kmx+2m2-8=0,
x1+x2=-
4km
1+2k2
x1x2=
2m2-8
1+2k2

由已知 k1+k2=8,可得 
y1-2
x1
+
y2-2
x2
=8

所以
kx1+m-2
x1
+
kx2+m-2
x2
=8
,即2k+(m-2)
x1+x2
x1x2
=8
.     
所以k-
mk
m+2
=4
,整理得 m=
1
2
k-2

故直线AB的方程为y=kx+
1
2
k-2
,即y=k(x+
1
2
)-2.
所以直线AB过定点(-
1
2
 , -2
).   
(2)若直线AB的斜率不存在,设AB方程为x=x0
设A(x0,y0),B(x0,-y0),
由已知
y0-2
x0
+
-y0-2
x0
=8
,得x0=-
1
2

此时AB方程为x=-
1
2
,显然过点(-
1
2
 , -2
).
综上,直线AB过定点(-
1
2
 , -2
).
核心考点
试题【已知椭圆x2a2+y2b2=1(a>b>0)的右焦点为F(2,0),M为椭圆的上顶点,O为坐标原点,且△MOF是等腰直角三角形.(Ⅰ)求椭圆的方程;(Ⅱ)过点M】;主要考察你对椭圆等知识点的理解。[详细]
举一反三
已知椭圆
x2
4
+
y2
b2
=1(0<b<2)的离心率等于


3
2
,抛物线x2=2py (p>0).
(1)若抛物线的焦点F在椭圆的顶点上,求椭圆和抛物线的方程;
(2)若抛物线的焦点F为(0,
1
2
),在抛物线上是否存在点P,使得过点P的切线与椭圆相交于A,B两点,且满足OA⊥OB?若存在,求出点P的坐标;若不存在,请说明理由.
题型:不详难度:| 查看答案
已知椭圆C的两焦点为F1(-1,0),F2(1,0),并且经过点M(1 , 
3
2
)

(1)求椭圆C的方程;
(2)已知圆O:x2+y2=1,直线l:mx+ny=1,证明当点P(m,n)在椭圆C上运动时,直线l与圆O恒相交;并求直线l被圆O所截得的弦长的取值范围.
题型:怀柔区二模难度:| 查看答案
已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的右焦点为F(1,0),且点(-1,


2
2
)在椭圆C上.
(1)求椭圆C的标准方程;
(2)已知动直线l过点F,且与椭圆C交于A,B两点,试问x轴上是否存在定点Q,使得


QA


QB
=-
7
16
恒成立?若存在,求出点Q的坐标,若不存在,请说明理由.
题型:海淀区二模难度:| 查看答案
已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
经过点A(2,1),离心率为


2
2
,过点B(3,0)的直线l与椭圆交于不同的两点M,N.
(Ⅰ)求椭圆的方程;
(Ⅱ)若|MN|=
3


2
2
,求直线MN的方程.
题型:门头沟区一模难度:| 查看答案
已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为


6
3

(I)若原点到直线x+y-b=0的距离为


2
,求椭圆的方程;
(II)设过椭圆的右焦点且倾斜角为45°的直线l和椭圆交于A,B两点.
(i)当|AB|=


3
,求b的值;
(ii)对于椭圆上任一点M,若


OM


OA


OB
,求实数λ,μ满足的关系式.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.