当前位置:高中试题 > 数学试题 > 圆与圆的位置关系 > 已知两圆C1:x2+y2+6x-4=0和圆C2:x2+y2+6y-28=0,(1)判断两圆的位置关系;   (2)若相交请求出两圆公共弦的长;(3)求过两圆的交...
题目
题型:不详难度:来源:
已知两圆C1:x2+y2+6x-4=0和圆C2:x2+y2+6y-28=0,
(1)判断两圆的位置关系;   (2)若相交请求出两圆公共弦的长;
(3)求过两圆的交点,且圆心在直线x-y=0上的圆的方程.
答案
(1)将圆C1:x2+y2+6x-4=0和圆C2:x2+y2+6y-28=0化为标准形式分别为:(x+3)2+y2=13和x2+(y+3)2=37,
两圆的圆心距、半径之和、半径之差分别为:d=3


2
,R+r=


37
+


13
,R-r=


37
-


13

因为R-r<d<R+r,所以,两圆相交.
(2)将两圆的方程相减可得公共弦方程:x-y+4=0,圆C1:x2+y2+6x-4=0到公共弦的距离d=
|-3+0+4|


2
=


2
2

由弦长公式求得公共弦弦长=2


r2-d2
=2


13-
1
2
=5


2

(3)设圆的方程:x2+y2+6x-4+λ(x2+y2+6y-28)=0,
其圆心坐标为(-
3
1+λ
,-
1+λ
)代入所设的圆的方程,解得λ=1(11分)
所以所求方程为x2+y2+3x+3y-16=0.
核心考点
试题【已知两圆C1:x2+y2+6x-4=0和圆C2:x2+y2+6y-28=0,(1)判断两圆的位置关系;   (2)若相交请求出两圆公共弦的长;(3)求过两圆的交】;主要考察你对圆与圆的位置关系等知识点的理解。[详细]
举一反三
两圆x2+y2+2x=0,x2+y2-4x-8y=-4的位置关系是(  )
A.相交B.外切C.相离D.内切
题型:不详难度:| 查看答案
已知圆C1:(x-1)2+y2=1;圆C2:x2+(y+2)2=1,则圆C1与C2的位置关系是(  )
A.相离B.相交C.相切D.内含
题型:不详难度:| 查看答案
过圆x2+y2-x+y-2=0和x2+y2=5的交点,且圆心在直线3x+4y-1=0上的圆的方程为______.
题型:不详难度:| 查看答案
若两圆(x-a)2+(y-2)2=1与圆x2+y2+2x-48=0相交,则正数a的取值范围是______.
题型:不详难度:| 查看答案
已知圆C1:(x-2)2+(y-1)2=10与圆C2:(x+6)2+(y+3)2=50交于A、B两点,则公共弦AB的长是______.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.