当前位置:高中试题 > 数学试题 > 直线与圆的位置关系 > 已知圆C:及直线:x-y+3=0。当直线被圆C截得的弦长为时,求:(1)a的值;(2)求过点(3,5)并与圆C相切的切线方程。 ...
题目
题型:福建省期中题难度:来源:
已知圆C:及直线:x-y+3=0。当直线被圆C截得的弦长为时,
求:(1)a的值;
(2)求过点(3,5)并与圆C相切的切线方程。
答案
解:(1)依题意,可得圆心C(a,2),半径r=2,
则圆心到直线:x-y+3=0的距离
由勾股定理,可知
代入,化简得
解得:a=1或a=-3,
a>0,所以a=1。
(2)由(1)知,圆C:
又(3,5)在圆外,
∴①当切线方程的斜率存在时,设方程为
由圆心到切线的距离d=r=2,可解得
∴切线方程为
②当过(3,5)的直线的斜率不存在时,直线方程为x=3,此时直线与圆相切;
综上,由①②可知,切线方程为或x=3。
核心考点
试题【已知圆C:及直线:x-y+3=0。当直线被圆C截得的弦长为时,求:(1)a的值;(2)求过点(3,5)并与圆C相切的切线方程。 】;主要考察你对直线与圆的位置关系等知识点的理解。[详细]
举一反三
若直线y=x+6与曲线恰有一个公共点,则b的取值范围为(    )。
题型:0110 期中题难度:| 查看答案
已知圆C:x2+y2-2x+4y-4=0,斜率为1的直线l与圆C相交于A,B两点,AB的中点为M,O为坐标原点,若OM=AB,则直线l的方程为(    )。
题型:0110 期中题难度:| 查看答案
已知直线:3x+4y-5=0,圆O:x2+y2=4。
(1)求直线被圆O所截得的弦长;
(2)如果过点(-1,2)的直线垂直,与圆心在直线x-2y=0上的圆M相切,圆M被直线分成两段圆弧,其弧长比为2:1,求圆M的方程。
题型:0110 期中题难度:| 查看答案
设圆上有且仅有两个点到直线4x-3y-2=0的距离等于1,则圆半径r的取值范围是(   )A.
B.
C.
D.
题型:0112 期中题难度:| 查看答案
已知圆C:x2+(y-1)2=5,直线l:mx-y+1-m=0。
(Ⅰ)求证:对m∈R,直线l与圆C总有两个不同交点;
(Ⅱ)设l与圆C交与不同的两点A、B,求弦AB的中点M的轨迹方程;
(Ⅲ)若定点P(1,1)分弦AB为,求此时直线l的方程。
题型:0112 期中题难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.