当前位置:高中试题 > 数学试题 > 直线与圆的位置关系 > (二选一)①在极坐标中,已知A、B的极坐标分别为(4,π3),(3,π4),则△AOB的面积为______.②过半径为1的圆外一点引圆的切线,若切线长等于圆的直...
题目
题型:不详难度:来源:
(二选一)
①在极坐标中,已知A、B的极坐标分别为(4,
π
3
),(3,
π
4
)
,则△AOB的面积为______.
②过半径为1的圆外一点引圆的切线,若切线长等于圆的直径,则该点到圆上的点的距离的最大值为______.
答案
①∵在极坐标中,已知A、B的极坐标分别为(4,
π
3
),(3,
π
4
)
,∴OA=4,OB=3,∠AOB=
π
3
-
π
4
=
π
12

 故 sin∠AOB=sin
π
12
=


1-cos
π
6
2
=


2-


3
2

∴△AOB的面积为
1
2
OA•OB•sin∠AOB=
1
2
×4×3×


2-


3
2
=3


2-


3

故答案为  3


2-


3

②过半径为1的圆外一点引圆的切线,若切线长等于圆的直径2,则由圆的切线性质可得该点到圆心的距离等于


5

则该点到圆上的点的距离的最大值为


5
+1,
故答案为


5
+1.
核心考点
试题【(二选一)①在极坐标中,已知A、B的极坐标分别为(4,π3),(3,π4),则△AOB的面积为______.②过半径为1的圆外一点引圆的切线,若切线长等于圆的直】;主要考察你对直线与圆的位置关系等知识点的理解。[详细]
举一反三
椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为e=


3
2
,点A是椭圆上的一点,且点A到椭圆C两焦点的距离之和为4.
(1)求椭圆C的方程;
(2)若P(m,n)(m>0,n>0)为椭圆C上一动点,直线L:mx+4ny-4=0与圆C′:x2+y2=4相交于A、B两点,求三角形OAB面积的最大值及此时直线L的方程.
题型:不详难度:| 查看答案
已知离心率为


2
2
的椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)过点M(


6
,1,O是坐标原点.
(1)求椭圆C的方程;
(2)已知点A、B为椭圆C上相异两点,且


OA


OB
,判定直线AB与圆O:x2+y2=
8
3
的位置关系,并证明你的结论.
题型:不详难度:| 查看答案
已知直线l:y=x+1和圆C:x2+y2=
1
2
,则直线l与圆C的位置关系为______.
题型:不详难度:| 查看答案
过点(1,1)的直线l与圆x2+y2=4交于A,B两点,若|AB|=2


2
,则直线l的方程为(  )
A.x+y-2=0B.x-2y+1=0C.2x-y-1=0D.x-y-1=0
题型:不详难度:| 查看答案
已知曲线C是动点M到两个定点O(0,0)、A(3,0)距离之比为
1
2
的点的轨迹.
(1)求曲线C的方程;
(2)求过点N(1,3)与曲线C相切的直线方程.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.