当前位置:高中试题 > 数学试题 > 圆的方程 > 求经过点(1,-7)与圆x2+y2=25相切的切线方程. ...
题目
题型:不详难度:来源:
求经过点(1,-7)与圆x2+y2=25相切的切线方程.
答案
切线方程为4x-3y-25=0或3x+4y+25=0.
解析
设所求切线方程为x0x+y0y=25,
将坐标(1,-7)代入后得x0-7y0=25.

解得
故所求切线方程为4x-3y-25=0或3x+4y+25=0.
核心考点
试题【求经过点(1,-7)与圆x2+y2=25相切的切线方程. 】;主要考察你对圆的方程等知识点的理解。[详细]
举一反三
若方程x2+y2+Dx+Ey+F=0表示以C(2,-4)为圆心,半径等于4的圆,则D=__________,E=_________,F="_________."
题型:不详难度:| 查看答案
等腰三角形的顶点是A(4,2),底边的一个端点是B(3,5),求另一个端点C的轨迹方程,并说明它的轨迹是什么.
题型:不详难度:| 查看答案
求圆心在直线x+y=0上,且过两圆x2+y2-2x+10y-24=0,x2+y2+2x+2y-8=0的交点的圆的方程.
题型:不详难度:| 查看答案
方程ax2+ay2-4(a-1)x+4y=0表示圆,求实数a的取值范围,并求出其中半径最小的圆的方程.
题型:不详难度:| 查看答案
如果圆的方程为x2+y2+kx+2y+k2=0,那么当圆面积最大时,圆心坐标为(  )
A.(-1,1)B.(1,-1)C.(-1,0)D.(0,-1)

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.