当前位置:高中试题 > 数学试题 > 直线的倾斜角与斜率 > (本小题满分13分) 设椭圆的离心率,右焦点到直线的距离为坐标原点.(I)求椭圆的方程;(II)过点作两条互相垂直的射线,与椭圆分别交于两点,证明点到直线的距...
题目
题型:不详难度:来源:
(本小题满分13分)
设椭圆的离心率,右焦点到直线的距离为坐标原点.
(I)求椭圆的方程;
(II)过点作两条互相垂直的射线,与椭圆分别交于两点,证明点到直
线的距离为定值,并求弦长度的最小值.
答案
(Ⅰ)
(Ⅱ)
解析
(Ⅰ)由
由右焦点到直线的距离为
得:      解得
所以椭圆C的方程为                                                 …………4分
(Ⅱ)设
直线AB的方程为
与椭圆联立消去y得


 
整理得   所以O到直线AB的距离
                                                       …………8分
, 当且仅当OA=OB时取“=”号。


即弦AB的长度的最小值是          …………13分
核心考点
试题【 (本小题满分13分) 设椭圆的离心率,右焦点到直线的距离为坐标原点.(I)求椭圆的方程;(II)过点作两条互相垂直的射线,与椭圆分别交于两点,证明点到直线的距】;主要考察你对直线的倾斜角与斜率等知识点的理解。[详细]
举一反三
如图,过点作垂直于轴的垂线交曲线于点,又过点轴的平行线交轴于点,记点关于直线的对称点为;……;依此类推.若数列的各项分别为点列的横坐标,且,则       
题型:不详难度:| 查看答案
以下四个关于圆锥曲线的命题中:
①设AB为两个定点,k为非零常数,若,则动点P的轨迹为双曲线;
②过定圆C上一定点A作圆的动弦ABO为坐标原点,若,则动点P的轨迹为椭圆;
③抛物线的焦点坐标是
④曲线与曲线)有相同的焦点.
其中真命题的序号为____________写出所有真命题的序号.
题型:不详难度:| 查看答案
已知平面上两定点C1,0),D(1,0)和一定直线为该平面上一动点,作,垂足为Q,且
(1)问点在什么曲线上,并求出曲线的轨迹方程M
(2)又已知点A为抛物线上一点,直线DA与曲线M的交点B不在 轴的右侧,且点B不在轴上,并满足的最小值.
题型:不详难度:| 查看答案
(本小题满分14分)
已知椭圆的左、右焦点分别为F1、F2,短轴两个端点为A、B,且四边形F1AF2B是边长为2的正方形。
(1)求椭圆的方程;
(2)若C、D分别是椭圆长的左、右端点,动点M满足MD⊥CD,连接CM,交椭圆于点P。证明:为定值。
(3)在(2)的条件下,试问x轴上是否存异于点C的定点Q,使得以MP为直径的圆恒过直线DP、MQ的交点,若存在,求出点Q的坐标;若不存在,请说明理由。

题型:不详难度:| 查看答案
如图,,过曲线上一点的切线,与曲线也相切于点,记点的横坐标为

(1)用表示切线的方程;
(2)用表示的值和点的坐标;
(3)当实数取何值时,
并求此时所在直线的方程。
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.