当前位置:高中试题 > 数学试题 > 二面角 > 已知菱形ABCD的边长为2,对角线AC与BD交于点O,且∠ABC=120°,M为BC的中点.将此菱形沿对角线BD折成二面角A-BD-C.( I)求证:面AOC⊥...
题目
题型:不详难度:来源:
已知菱形ABCD的边长为2,对角线AC与BD交于点O,且∠ABC=120°,M为BC的中点.将此菱形沿对角线BD折成二面角A-BD-C.
( I)求证:面AOC⊥面BCD;
( II)若二面角A-BD-C为60°时,求直线AM与面AOC所成角的余弦值.
答案
( I)证明:因为四边形ABCD为菱形,
所以OA⊥BD,OC⊥BD,
所以
AO⊥BD
CO⊥BD
AO∩CO=O





BD⊥面AOC
BD⊆面BCD





⇒面AOC⊥面BCD…(6分)
( II)菱形沿对角线BD折成二面角A-BD-C后,仍然有AO⊥BD,CO⊥BD,
∴∠AOC是二面角A-BD-C的平面角,即∠AOC=60°…(8分)
作MK⊥OC,连接AK,如图所示:

因为MKBD,BD⊥面AOC,
所以MK⊥面AOC,
所以∠MAK是直线AM与面AOC所成的角…(10分)
因为菱形ABCD的边长为2,对角线AC与BD交于点O,且∠ABC=120°,
所以OC=AO=


3
,BD=


3

又因为MK⊥OC,M为BC的中点,
所以K为OC的中点,
所以OK=


3
2

所以在△AOK中,因为∠AOC=60°,
所以AK2=AO2+OK2-2AO•OK•cos∠AOK=
9
4
,所以AK=
3
2

在Rt△AMK中,
AK=
3
2
MK=
1
2
BO=
1
2

AM=


10
2

cos∠MAK=
AK
MA
=
3


10
=
3


10
10

∴直线AM与面AOC所成角的余弦值是
3


10
10
…(14分)
核心考点
试题【已知菱形ABCD的边长为2,对角线AC与BD交于点O,且∠ABC=120°,M为BC的中点.将此菱形沿对角线BD折成二面角A-BD-C.( I)求证:面AOC⊥】;主要考察你对二面角等知识点的理解。[详细]
举一反三
如图△BCD与△MCD都是边长为2的正三角形,平面MCD⊥平面BCD,AB⊥平面BCD,AB=2


3

(1)求点A到平面MBC的距离;
(2)求平面ACM与平面BCD所成二面角的正弦值.
题型:不详难度:| 查看答案
如图:在二面角α-l-β中,A、B∈α,C、D∈l,ABCD为矩形,p∈β,PA⊥α,且PA=AD,M、N依次是AB、PC的中点,
(1)求二面角α-l-β的大小
(2)求证:MN⊥AB
(3)求异面直线PA和MN所成角的大小.
题型:不详难度:| 查看答案
在直角坐标系中,A(-2,3),B(3,-2)沿x轴把直角坐标系折成90°的二面角,则此时线段AB的长度为(  )
A.2


5
B.


38
C.5


2
D.4


2
题型:不详难度:| 查看答案
如图,在平行四边形ABCD中,∠DAB=60°,AB=2,AD=4,将△CBD沿BD折起到△EBD的位置,使平面EBD⊥平面ABD.
(1)求二面角E-AB-D的大小;
(2)求四面体ABDE的表面积.
题型:不详难度:| 查看答案
如图,在正三棱柱ABC-A1B1C1中,点D,D1分别为棱BC,B1C1的中点.
(1)求证:直线A1D1平面ADC1
(2)求证:平面ADC1⊥平面BCC1B1
(3)设底面边长为2,侧棱长为4,求二面角C1-AD-C的余弦值.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.