当前位置:高中试题 > 数学试题 > 线线角 > (本小题满分12分)如图,在四棱锥P—ABCD中,底面ABCD是正方形,PA⊥平面ABCD,且PA=AB=2,E、F分别为AB、PC的中点。 (1)求异面直线P...
题目
题型:不详难度:来源:
(本小题满分12分)
如图,在四棱锥P—ABCD中,底面ABCD是正方形,PA⊥平面ABCD,且PA=AB=2,E、F分别为AB、PC的中点。 
(1)求异面直线PA与BF所成角的正切值。
(2)求证:EF⊥平面PCD。
答案
解:(1)如图,连结AC
过点F作FO⊥AC,
∴面PAC⊥面ABCD
∵PA⊥平面ABCD,
∴平面PAC⊥AC,垂足为O,
连结BO,则FO⊥平面ABCD,且FO//PA。
∴∠BFO为异面直线PA与BF所成的角………………4分
在Rt△BOF中,OFPA=1,
OB=,则tanBFO=………………6分
(2)连结OE、CE、PE。
∵E是AB的中点,
∴OE⊥AB
又FO⊥平面ABCD,
∴EF⊥AB。
∵AB//CD
∴EF⊥CD
在Rt△PAE和Rt△CBE中,PA=CB,AE=BE,
∴Rt△PAE≌Rt△CBE,
∴PE=CE…………………………10分
∴又F为PC的中点,
∴EF⊥PC。
故EF⊥平面PCD。……………………12分
解析

核心考点
试题【(本小题满分12分)如图,在四棱锥P—ABCD中,底面ABCD是正方形,PA⊥平面ABCD,且PA=AB=2,E、F分别为AB、PC的中点。 (1)求异面直线P】;主要考察你对线线角等知识点的理解。[详细]
举一反三
(.(本小题满分12分)
如图,四棱锥S-ABCD的底面是矩形,ABa,AD2,SA1,且SA⊥底面ABCD,若

边BC上存在异于B,C的一点P,使得
(1)求a的最大值;
(2)当a取最大值时,求平面SCD的一个单位法向量
及点P到平面SCD的距离.
题型:不详难度:| 查看答案
. (本小题满分9分)
(如图)在底面为平行四边形的四棱锥中,平面,且,点的中点.

(Ⅰ)求证:
(Ⅱ)求证:平面
(Ⅲ)(理科学生做)求二面角的大小.
(文科学生做)当时,求直线和平面所成的线面角的大小.
题型:不详难度:| 查看答案

如图,长方体中,DA = DC =2,’E是的中点,F是C/:的中点.

(1)求证:平面BDF
(2)求证:平面BDF平面
(3)求二面角D-EB-C的正切值.
题型:不详难度:| 查看答案
在棱长为1的正方体ABCD-A1B1C1D1中,M 为BB1的中点,则点D到直线A1M的距离为            
A.B.C.D.

题型:不详难度:| 查看答案
(本小题满分12分)
如图, 在直三棱柱ABC-A1B1C1中,AC=3,BC=4,,AA1=3,点D是AB的中点.
(Ⅰ)求证:
(Ⅱ)求二面角的大小.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.