当前位置:高中试题 > 数学试题 > 线线角 > 选修4-1:几何证明选讲如图,在等腰梯形ABCD中,对角线AC⊥BD,且相交于点O ,E是AB边的中点,EO的延长线交CD于F.(1)求证:EF⊥CD;(2)若...
题目
题型:不详难度:来源:
选修4-1:几何证明选讲
如图,在等腰梯形ABCD中,对角线AC⊥BD,且相交于点O ,E是AB边的中点,EO的延长线交CD于F.

(1)求证:EF⊥CD;
(2)若∠ABD=30°,求证
答案
(1)先证明△AOB≌△DOC, 从而得出∠ODC=∠OAB,进而可以证明结论;
(2)先证明△DOC∽△DFO,利用面积比等于相似比的平方比即可证明.
解析

试题分析:(1)∵ △AOB为直角三角形,且E 为AB边的中点,
∴EO="EA=EB," ∴∠EAO=∠EOA, ∠EOB=∠EBO,
又△AOB≌△DOC, ∴∠ODC=∠OAB,
∠EOB=∠DOF(对顶角),∴∠ODC+∠DOF=90°
∴∠DFO=90°
∴EF⊥CD
(2)∵∠ABD=30°∴∠EOB=∠DOF=30°,
∴在Rt△DOF中,DF=OD,△DOC∽△DFO,
所以根据面积比等于相似比的平方比,知
点评:在利用相似三角形解答时,注意通过对应边找对应角,通过对应角找对应边,不要找错了。
核心考点
试题【选修4-1:几何证明选讲如图,在等腰梯形ABCD中,对角线AC⊥BD,且相交于点O ,E是AB边的中点,EO的延长线交CD于F.(1)求证:EF⊥CD;(2)若】;主要考察你对线线角等知识点的理解。[详细]
举一反三
如图,在直角梯形ABCD中,,且E、F分别为线段CD、AB上的点,且.将梯形沿EF折起,使得平面平面BCEF,折后BD与平面ADEF所成角正切值为

(Ⅰ)求证:平面BDE
(Ⅱ)求平面BCEF与平面ABD所成二面角(锐角)的大小.
题型:不详难度:| 查看答案
如图:在多面体EF-ABCD中,四边形ABCD是平行四边形,△EAD为正三角形,且平面EAD平面ABCD,EF∥AB, AB=2EF=2AD=4,.

(Ⅰ)求多面体EF-ABCD的体积;
(Ⅱ)求直线BD与平面BCF所成角的大小.
题型:不详难度:| 查看答案
如图一,△ABC是正三角形,△ABD是等腰直角三角形,AB=BD=2。将△ABD沿边AB折起, 使得△ABD与△ABC成直二面角,如图二,在二面角中.

(1)求证:BD⊥AC;
(2)求D、C之间的距离;
(3)求DC与面ABD成的角的正弦值。
题型:不详难度:| 查看答案
已知二面角α-l-β为 ,动点P.Q分别在面α.β内,P到β的距离为,Q到α的距离为,则P. Q两点之间距离的最小值为   
题型:不详难度:| 查看答案
如图:在多面体EF-ABCD中,四边形ABCD是平行四边形,△EAD为正三角形,且平面EAD平面ABCD,EF∥AB, AB=2EF=2AD=4,.

(Ⅰ)求证:BFAD;
(Ⅱ)求直线BD与平面BCF所成角的大小.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.