当前位置:高中试题 > 数学试题 > 线线角 > 如图,直角梯形与等腰直角三角形所在的平面互相垂直.∥,,,.(1)求证:;(2)求直线与平面所成角的正弦值; ...
题目
题型:不详难度:来源:
如图,直角梯形与等腰直角三角形所在的平面互相垂直.

(1)求证:
(2)求直线与平面所成角的正弦值;
答案
(1)取中点,连结.证得,由四边形为直角梯形,得到,证得平面.推出
(2)直线与平面所成角的正弦值为
解析

试题分析:(1)证明:取中点,连结

因为,所以            2分
因为四边形为直角梯形,

所以四边形为正方形,所以.     4分
所以平面.   
所以 .            6分        
(2)解法1:因为平面平面,且
所以BC⊥平面                          8分
即为直线与平面所成的角               9分
设BC=a,则AB=2a,,所以
则直角三角形CBE中,          。11分
即直线与平面所成角的正弦值为.            。12分
解法2:因为平面平面,且

所以平面,所以
两两垂直,建立如图所示的空间直角坐标系. 因为三角形为等腰直角三角形,所以,设

所以 ,平面的一个法向量为
设直线与平面所成的角为
所以 ,           
即直线与平面所成角的正弦值为.(参照解法1给步骤分)     12分
点评:典型题,立体几何题,是高考必考内容,往往涉及垂直关系、平行关系、角、距离及体积的计算。在计算问题中,有“几何法”和“向量法”。利用几何法,要遵循“一作、二证、三计算”的步骤,利用向量则能简化证明过程。本题给出了两种解法,便于比较借鉴。
核心考点
试题【如图,直角梯形与等腰直角三角形所在的平面互相垂直.∥,,,.(1)求证:;(2)求直线与平面所成角的正弦值; 】;主要考察你对线线角等知识点的理解。[详细]
举一反三
三条直线相交于一点,可能确定的平面有
A.B.C.D.个或

题型:不详难度:| 查看答案
如图所示,点P在正方形ABCD所在平面外,PA⊥平面ABCD,PA=AB,则PB与AC所成的角是(  )
A.90°  B.60° 
C.45°  D.30°

题型:不详难度:| 查看答案
a,b,c表示三条不重合的直线,M表示平面,给出下列四个命题:①若a∥M,b∥M,则a∥b;②若bM,a∥b,则a∥M;③若a⊥c,b⊥c,则a∥b;④若a⊥M,b⊥M,则a∥b.其中正确命题的个数有
A.0个B.1个C.2个D.3个

题型:不详难度:| 查看答案
将正方形ABCD沿对角线BD折成直二面角ABDC,有如下四个结论:
ACBD;     ②△ACD是等边三角形;
AB与平面BCD成60°的角;   ④ABCD所成的角是60°.
其中正确结论的序号是________.
题型:不详难度:| 查看答案
如图,△ABC中,ACBCABABED是边长为1的正方形,EB⊥底面ABC,若GF分别是ECBD的中点.
(1)求证:GF底面ABC
(2)求证:AC⊥平面EBC
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.