当前位置:高中试题 > 数学试题 > 线线角 > 如图,在四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90°. (1)求证:PC⊥BC;(2)求点A到平面PB...
题目
题型:不详难度:来源:
如图,在四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90°.
(1)求证:PC⊥BC;
(2)求点A到平面PBC的距离.

答案
(1)证明详见解析;(2).
解析

试题分析:(1) 由PD⊥平面ABCD,得PD⊥BC,由∠BCD=90°,得CD⊥BC,所以BC⊥平面PCD,那么PC⊥BC;(2)利用等积法,先求出棱锥的体积V=SABC·PD=,再求出S△PBC,由S△PBC·h=V=,得h=
解:(1)证明:∵ PD⊥平面ABCD,BC 平面ABCD,∴ PD⊥BC.      1分
由∠BCD=90°,得CD⊥BC.         3分
又PD∩DC=D, PD,DC 平面PCD,
∴ BC⊥平面PCD.         5分
∵ PC 平面PCD,故PC⊥BC.           7分
 
(2)连接AC,设点A到平面PBC的距离为h.
∵ AB∥DC,∠BCD=90°,∴∠ABC=90°.   8分
由AB=2,BC=1,得△ABC的面积S△ABC=1.  9分
由PD⊥平面ABCD,及PD=1,得三棱锥P-ABC的体积
V=SABC·PD=.                        10分
∵ PD⊥平面ABCD,DC平面ABCD,∴ PD⊥DC.         ....11分
∴PD=DC=1,∴PC=.由PC⊥BC,BC=1,
得△PBC的面积S△PBC.                 .. ..12分
∵VA - PBC=VP - ABC
S△PBC·h=V=,得h=.             .13分
故点A到平面PBC的距离等于.              14分
核心考点
试题【如图,在四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90°. (1)求证:PC⊥BC;(2)求点A到平面PB】;主要考察你对线线角等知识点的理解。[详细]
举一反三
已知两条互不重合的直线m,n,两个不同的平面α,β,下列命题中正确的是(  )
A.若m∥α,n∥β,且m∥n,则α∥β
B.若m⊥α,n∥β,且m⊥n,则α⊥β
C.若m⊥α,n∥β,且m∥n,则α∥β
D.若m⊥α,n⊥β,且m⊥n,则α⊥β

题型:不详难度:| 查看答案
如图,在四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°,将△ABD沿BD折起,使平面ABD⊥平面BCD,构成三棱锥A-BCD,则在三棱锥A-BCD中,下列命题正确的是(  )
A.平面ABD⊥平面ABCB.平面ADC⊥平面BDC
C.平面ABC⊥平面BDCD.平面ADC⊥平面ABC

题型:不详难度:| 查看答案
设m,n是两条不同的直线,α,β是两个不同的平面,给出下列命题:
①若α∥β,m⊂β,n⊂α,则m∥n;
②若α∥β,m⊥β,n∥α,则m⊥n;
③若α⊥β,m⊥α,n∥β,则m∥n;
④若α⊥β,m⊥α,n⊥β,则m⊥n.
上面命题中,所有真命题的序号为________.
题型:不详难度:| 查看答案
如图,圆锥顶点为P,底面圆心为O,其母线与底面所成的角为22.5°,AB和CD是底面圆O上的两条平行的弦,轴OP与平面PCD所成的角为60°.

(1)证明:平面PAB与平面PCD的交线平行于底面;
(2)求cos∠COD.
题型:不详难度:| 查看答案
所在平面外一点,若,则在平面内的射影是的(   )
A.内心B.外心 C.重心D.垂心

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.