当前位置:高中试题 > 数学试题 > 线面垂直 > 已知ABCD是矩形,PA⊥平面ABCD,AB=2,PA=AD=4,E为BC的中点.(1)求证:DE⊥平面PAE;(2)求直线DP与平面PAE所成的角. ...
题目
题型:0113 月考题难度:来源:
已知ABCD是矩形,PA⊥平面ABCD,AB=2,PA=AD=4,E为BC的中点.
(1)求证:DE⊥平面PAE;
(2)求直线DP与平面PAE所成的角.
答案
(1)证明:在△ADE中,,∴AE⊥DE,
∵PA⊥平面ABCD,平面ABCD,
∴PA⊥DE,
又PA∩AE=A,
∴DE⊥平面PAE。
(2)解:∠DPE为DP与平面PAE所成的角,
在Rt△PAD中,
在Rt△DCE中,
在Rt△DEP中,PD=2DE,
核心考点
试题【已知ABCD是矩形,PA⊥平面ABCD,AB=2,PA=AD=4,E为BC的中点.(1)求证:DE⊥平面PAE;(2)求直线DP与平面PAE所成的角. 】;主要考察你对线面垂直等知识点的理解。[详细]
举一反三
如图,在四棱锥P-ABCD中,底面ABCD是∠DAB=60°且边长为a的菱形,侧面PAD是等边三角形,且平面PAD垂直于底面ABCD.
(1)若G为AD的中点,求证:BG⊥平面PAD;
(2)求证:AD⊥PB;
(3)求二面角A-BC-P的大小.
题型:0113 月考题难度:| 查看答案
如图,在四棱锥P-ABCD中,PA⊥底面ABCD,∠DAB为直角,AB∥CD,AD=CD=2AB,E、F分别为PC、CD的中点.
(Ⅰ)试证:AB⊥平面BEF;
(Ⅱ)设PA=k·AB,若平面EBD与平面BDC的夹角大于45°,求k的取值范围.
题型:0112 模拟题难度:| 查看答案
如图,四棱锥P-ABCD,△PAB≌△CBA,在它的俯视图ABCD中,BC=CD,AD=1,∠BCD=∠BAD=60°。
(1)求证:△PBC是直角三角形;
(2)求四棱锥P-ABCD的体积.
题型:广东省模拟题难度:| 查看答案

如图,己知△BCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,∠ADB=60°,E、F分别是AC、AD上的动点,且(0<λ<1)。
(1)求证:不论λ为何值,总有EF⊥平面ABC;
 (2)若λ=,求三棱锥A-BEF的体积。


题型:广东省模拟题难度:| 查看答案
如图所示,在边长为12的正方形ADD1A1中,点B,C在线段AD上,且AB=3,BC=4,作BB1∥AA1,分别交A1D1,AD1于点B1,P,作CC1∥AA1,分别交A1D1,AD1于点C1,Q,将该正方形沿BB1,CC1折叠,使得DD1与AA1重合,构成如图2所示的三棱柱ABC-A1B1C1
(Ⅰ)求证:AB⊥平面BCC1B1
(Ⅱ)求四棱锥A-BCQP的体积。
题型:0110 月考题难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.