当前位置:高中试题 > 数学试题 > 线面垂直 > 如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,AB⊥AD,点E在线段AD上,且CE∥AB.(I)求证:CE⊥平面PAD;(II)若PA=AB=1,AD=3,C...
题目
题型:山东省月考题难度:来源:
如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,AB⊥AD,点E在线段AD上,且CE∥AB.
(I)求证:CE⊥平面PAD;
(II)若PA=AB=1,AD=3,CD=,∠CDA=45°,求四棱锥P-ABCD的体积.
答案
解:(I)证明:∵PA⊥平面ABCD,CE平面ABCD,
∴PA⊥CE,
∵AB⊥AD,CE∥AB,
∴CE⊥AD又PA∩AD=A,
∴CE⊥平面PAD
(II)由(I)可知CE⊥AD在Rt△ECD中,DE=CDcos45°=1,CE=CDsin45°=1,
又∵AB=CE=1,AB∥CE
∴四边形ABCE为矩形
=
又PA平面ABCD,PA=1
核心考点
试题【如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,AB⊥AD,点E在线段AD上,且CE∥AB.(I)求证:CE⊥平面PAD;(II)若PA=AB=1,AD=3,C】;主要考察你对线面垂直等知识点的理解。[详细]
举一反三
如图,三棱锥P﹣ABC中,PC⊥平面ABC,PC=AC=2,AB=BC,D是PB上一点,且CD⊥平面PAB.
(1)求证:AB⊥平面PCB;
(2)求二面角C﹣PA﹣B的大小的余弦值.
题型:重庆市期末题难度:| 查看答案
如图,四棱锥P﹣ABCD的底面是直角梯形,AB∥CD,AB⊥AD,△PAB和△PAD是两个边长为2的正三角形,DC=4,O为BD的中点,E为PA的中点.
(Ⅰ)求证:PO⊥平面ABCD;
(Ⅱ)求证:OE∥平面PDC;
(Ⅲ)求直线CB与平面PDC所成角的正弦值.
题型:河南省期末题难度:| 查看答案
如图,ABCD﹣A1B1C1D1为正方体,下面结论中正确的是(    )。(把你认为正确的结论都填上)
①BD∥平面CB1D1
②AC1∥平面CB1D1
③AC1与底面ABCD所成角的正切值是
④二面角C﹣B1D1﹣C1的正切值是
⑤过点A1与异面直线AD与CB1成70°角的直线有2条.
题型:浙江省期末题难度:| 查看答案
如图,四棱锥P﹣ABCD中,底面ABCD为平行四边形.∠DAB=60°,AB=2AD,
PD⊥底面ABCD.
(I)证明:PA⊥BD
(II)设PD=AD=1,求棱锥D﹣PBC的高.
题型:四川省期末题难度:| 查看答案
如图,在圆锥PO中,已知PO=,⊙OD的直径AB=2,点C在上,且∠CAB=30°,D为AC的中点.
(Ⅰ)证明:AC⊥平面POD;
(Ⅱ)求直线OC和平面PAC所成角的正弦值.
题型:四川省期末题难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.