当前位置:高中试题 > 数学试题 > 线面垂直 > 如图,在直三棱柱ABC-A1B1C1中,AC⊥BC,AC=BC=CC1,M、N分别是A1B、B1C1的中点.(Ⅰ)求证:MN⊥平面A1BC;(Ⅱ)求直线BC1和...
题目
题型:不详难度:来源:
如图,在直三棱柱ABC-A1B1C1中,AC⊥BC,AC=BC=CC1,M、N分别是A1B、B1C1的中点.
(Ⅰ)求证:MN⊥平面A1BC;
(Ⅱ)求直线BC1和平面A1BC所成角的大小.
答案
证明:(Ⅰ)由已知BC⊥AC,BC⊥CC1
所以BC⊥平面ACC1A1.连接AC1,则BC⊥AC1
由已知,侧面ACC1A1是矩形,所以A1C⊥AC1
又BC∩A1C=C,所以AC1⊥平面A1BC.
因为侧面ABB1A1是正方形,M是A1B的中点,连接AB1,则点M是AB1的中点.
又点N是B1C1的中点,则MN是△AB1C1的中位线,所以MNAC1
故MN⊥平面A1BC.
(Ⅱ)因为AC1⊥平面A1BC,设AC1与A1C相交于点D,
连接BD,则∠C1BD为直线BC1和平面A1BC所成角.
设AC=BC=CC1=a,则C1D=


2
2
a,BC1=


2
a.
在Rt△BDC1中,sin∠C1BD=
C1D
BC1
=
1
2

所以∠C1BD=30°,故直线BC1和平面A1BC所成的角为30°.
核心考点
试题【如图,在直三棱柱ABC-A1B1C1中,AC⊥BC,AC=BC=CC1,M、N分别是A1B、B1C1的中点.(Ⅰ)求证:MN⊥平面A1BC;(Ⅱ)求直线BC1和】;主要考察你对线面垂直等知识点的理解。[详细]
举一反三
如图,平面PAD⊥平面ABCD,ABCD为正方形,∠PAD=90°,且PA=AD,E、F分别是线段PA、CD的中点.
(Ⅰ)求证:PA⊥平面ABCD;
(Ⅱ)求EF和平面ABCD所成的角α;
(Ⅲ)求异面直线EF与BD所成的角β.
题型:不详难度:| 查看答案
如图1所示,在Rt△ABC中,AC=6,BC=3,∠ABC=90°,CD为∠ACB的平分线,点E在线段AC上,CE=4.如图2所示,将△BCD沿CD折起,使得平面BCD⊥平面ACD,连接AB,设点F是AB的中点.
(1)求证:DE⊥平面BCD;
(2)若EF平面BDG,其中G为直线AC与平面BDG的交点,求三棱锥B-DEG的体积.
题型:不详难度:| 查看答案
如图,四棱锥P-ABCD中,底面ABCD为平行四边形,∠ADC=45°,AD=AC=2,O为AC的中点,PO⊥平面ABCD,PO=2,M为PD的中点,
(1)证明:AD⊥平面PAC;
(2)求直线AM与平面ABCD所成角的正弦值.
题型:不详难度:| 查看答案
在长方体AC′中,AB=AC=a,BB′=b(b>a),连接BC′,过点B′作B′E⊥BC′交CC′于E.
(1)求证:AC′⊥平面EB′D′;
(2)求三棱锥C′-B′D′E的体积.
题型:不详难度:| 查看答案
如图,四棱锥SABCD中,底面ABCD是正方形,SA⊥面ABCD,且SA=AB,M、N分别为SB、SD中点,求证:
(1)DB平面AMN.
(2)SC⊥平面AMN.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.