当前位置:初中试题 > 数学试题 > 圆的基本性质 > 如图,已知AC、AB、BC是⊙O的弦,CE是⊙O的直径,CD⊥AB于点D.(1)求证:∠ACD=∠BCE;(2)延长CD交⊙O于点F,连接AE、BF,AC=12...
题目
题型:不详难度:来源:
如图,已知AC、AB、BC是⊙O的弦,CE是⊙O的直径,CD⊥AB于点D.
(1)求证:∠ACD=∠BCE;
(2)延长CD交⊙O于点F,连接AE、BF,AC=12、CE=13,求BF长.
答案
(1)证明:∵CE是⊙O的直径,
∴∠CAE=90°,
∴∠BAC+∠BAE=90°,
∵CD⊥AB,
∴∠BAC+∠ACD=90°,
∴∠BAE=∠ACD,
∵∠BAE=∠BCE,
∴∠ACD=∠BCE;

(2)∵∠ACD=∠BCE,
即∠ACE+∠ECD=∠ECD+∠BCD,
∴∠ACE=∠BCD,
∵∠CAE=∠CDB=90°,
∴△ACE△DCB,
∴AC:DC=AE:DB,
∵在Rt△ACE中,AC=12,CE=13,
∴AE=


CE2-AC2
=5,
∴CD:BD=AC:AE=12:5,
∵∠CAB=∠F,∠ACD=∠ABF,
∴△ACD△FBD,
∴AC:BF=CD:BD=12:5,
∴BF=
5
12
×12=5.
核心考点
试题【如图,已知AC、AB、BC是⊙O的弦,CE是⊙O的直径,CD⊥AB于点D.(1)求证:∠ACD=∠BCE;(2)延长CD交⊙O于点F,连接AE、BF,AC=12】;主要考察你对圆的基本性质等知识点的理解。[详细]
举一反三
如图,⊙O的直径CD过弦EF的中点G,∠EOD=40°,求∠DCF的度数.
题型:不详难度:| 查看答案
如图,AB是⊙O的一条弦,OD⊥AB于点C,交⊙O于点D,点E在⊙O上,∠AED=25°,则∠OBA的度数是______.
题型:不详难度:| 查看答案
如图,△ABC是⊙O的内接三角形,AC=BC,D为⊙O中
AB
上一点,延长DA至点E,使CE=CD.
(1)求证:AE=BD;
(2)若AC⊥BC,求证:AD+BD=


2
CD.
题型:不详难度:| 查看答案
已知:如图,△ABC、△ABE内接于⊙O,AD是BC边上的高,且AC•BE=AE•CD
求证:AE是⊙O的直径.
题型:不详难度:| 查看答案
已知如图:AB是⊙O的直径,AB=AC,BC交⊙O于点D,AC交⊙O于点E,∠BAC=45°,给出以下四个结论:(1)∠EBC=22.5°(2)BD=DC;(3)
EC
AE
=


2
-1;(4)AE=2DE.其中错误结论的个数是(  )
A.0个B.1个C.2个D.3个

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.