当前位置:高中试题 > 数学试题 > 空间几何体的结构特征 > 如图,正四面体ABCD的顶点A、B、C分别在两两垂直的三条射线Ox、Oy、Oz上,给出下列四个命题:①多面体O-ABC是正三棱锥;②直线OB∥平面ACD;③直线...
题目
题型:不详难度:来源:
如图,正四面体ABCD的顶点A、B、C分别在两两垂直的三条射线Ox、Oy、Oz上,给出下列四个命题:
①多面体O-ABC是正三棱锥;
②直线OB平面ACD;
③直线AD与OB所成的角为45°;
④二面角D-OB-A为45°.
其中真命题有______(写出所有真命题的序号).魔方格
答案

魔方格
①如图ABCD为正四面体,
∴△ABC为等边三角形,
又∵OA、OB、OC两两垂直,
∴OA⊥面OBC,∴OA⊥BC,
过O作底面ABC的垂线,垂足为N,
连接AN交BC于M,
魔方格

由三垂线定理可知BC⊥AM,
∴M为BC中点,
同理可证,连接CN交AB于P,则P为AB中点,
∴N为底面△ABC中心,
∴O-ABC是正三棱锥,故A正确.
②将正四面体ABCD放入正方体中,如图所示,显然OB与平面ACD不平行.
则②不正确,
③直线AD与OB所成的角为45°;
④二面角D-OB-A为45°.
命题③④显然成立.
故答案为:①③④.
核心考点
试题【如图,正四面体ABCD的顶点A、B、C分别在两两垂直的三条射线Ox、Oy、Oz上,给出下列四个命题:①多面体O-ABC是正三棱锥;②直线OB∥平面ACD;③直线】;主要考察你对空间几何体的结构特征等知识点的理解。[详细]
举一反三
有一个各条棱长均为a的正四棱锥,现用一张正方形包装纸将其完全包住,不能剪裁,但可以折叠,则包装纸的最小边长是______.
题型:不详难度:| 查看答案
已知球O的半径为2cm,A、B、C为球面上三点,A与B、B与C的球面距离都是πcm,A与C的球面距离为
3
cm,那么三棱锥O-ABC的体积为(  )
A.
2


3
3
cm3
B.2


3
cm3
C.
4


3
3
cm3
D.4


3
cm3
题型:不详难度:| 查看答案
过半径为2的球O表面上一点A作球O的截面,若OA与该截面所成的角是60°,则该截面的面积是______.
题型:不详难度:| 查看答案
三棱锥的中截面面积与该三棱锥底面面积的比为(  )
A.1:2B.1:3C.1:4D.1:5
题型:不详难度:| 查看答案
如图所示,ABCD是空间四边形,E、F、G、H分别是四边上的中点,并且AC⊥BD,AC=m,BD=n,则四 边形EFGH的面积为______.魔方格
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.