当前位置:高中试题 > 数学试题 > 空间几何体的结构特征 > (本小题满分12分)如图,在四棱锥P—ABCD中,侧面PAD是正三角形,且垂直于底面ABCD,底面ABCD是边长为2的菱形,∠BAD=60°,M为PC上一点,且...
题目
题型:不详难度:来源:
(本小题满分12分)如图,在四棱锥P—ABCD中,侧面PAD是正三角形,且垂直于底面ABCD,底面ABCD是边长为2的菱形,∠BAD=60°,M为PC上一点,且PA//平面BDM,
(1)求证:M为PC的中点;
(2)求证:面ADM⊥面PBC。
答案
(Ⅰ)见解析   (Ⅱ) 见解析 
解析
(1):连接AC,AC与BD交于G,则面PAC∩面BDM=MG,
由PA//平面BDM,可得PA//MG……3分∵底面ABCD为菱形,∴G为AC的中点,
∴MG为△PAC的中位线。因此M为PC的中点。……5分
(2)取AD中点O,连结PO,BO。∵△PAD是正三角形,∴PO⊥AD,
又因为平面PAD⊥平面ABCD,所以,PO⊥平面ABCD,…7分
∵底面ABCD是菱形且∠BAD=60°,△ABD是正三角形,
∴AD⊥OB。∴OA,OB,OP两两垂直,建立空间直角坐标系…7分

………………9分

……11分∴DM⊥平面PBC,又DM平面ADM,
∴ADM⊥面PBC …12分
注:其他方法参照给分。

核心考点
试题【(本小题满分12分)如图,在四棱锥P—ABCD中,侧面PAD是正三角形,且垂直于底面ABCD,底面ABCD是边长为2的菱形,∠BAD=60°,M为PC上一点,且】;主要考察你对空间几何体的结构特征等知识点的理解。[详细]
举一反三
如图所示,在直角梯形ABCP中,AB=BC=3,AP=7,CD⊥AP,现将沿折线CD折成60°的二面角P—CD—A,设E,F,G分别是PD,PC,BC的中点。
(I)求证:PA//平面EFG;
(II)若M为线段CD上的一个动点,问当M在什么位置时,MF与平面EFG所成角最大。

题型:不详难度:| 查看答案
如图,在长方体中,点在棱的延长线上,


(Ⅰ) 求证://平面 ;(Ⅱ) 求证:平面平面
(Ⅲ)求四面体的体积.
题型:不详难度:| 查看答案
(本题满分12分)如图,ABCD是边长为2的正方形,ED⊥平面ABCDED=1,EFBDEFBD
(1)求证:BF∥平面ACE;(2)求二面角BAFC的大小;
(3)求点F到平面ACE的距离.
题型:不详难度:| 查看答案
对于四面体ABCD,下列命题正确的是         (写出所有正确命题的编号)。
①相对棱ABCD所在的直线异面;
②由顶点A作四面体的高,其垂足是BCD的三条高线的交点;
③若分别作ABCABD的边AB上的高,则这两条高所在直线异面;
④分别作三组相对棱中点的连线,所得的三条线段相交于一点;
⑤最长棱必有某个端点,由它引出的另两条棱的长度之和大于最长棱。
题型:不详难度:| 查看答案
如图,已知正方体ABCD-A1B1C1D1AD1A1D相交于点O

(1)判断AD1与平面A1B1CD的位置关系,并证明;
(2)求直线AB1与平面A1B1CD所成的角.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.