当前位置:高中试题 > 数学试题 > 空间几何体的结构特征 > 如图,己知四棱锥P-ABCD的底面为等腰梯形,AB∥CD,⊥BD垂足为H,PH是四棱锥的高,E为AD中点. (Ⅰ)证明:PE⊥BC(Ⅱ)若==60°,求直线PA...
题目
题型:不详难度:来源:
如图,己知四棱锥P-ABCD的底面为等腰梯形,AB∥CD,⊥BD垂足为H,PH是四棱锥的高,E为AD中点.

(Ⅰ)证明:PE⊥BC
(Ⅱ)若==60°,求直线PA与平面PEH所成角的正弦值.
答案

解析

解:
(I)以为原点,分别为轴,线段的长为单位长度,建立坐标系如图所示。

则  
可得


(II)由已知条件可得,则

是平面的法向量


因此可以取

可得
∴直线和平面所成角的正弦值为
核心考点
试题【如图,己知四棱锥P-ABCD的底面为等腰梯形,AB∥CD,⊥BD垂足为H,PH是四棱锥的高,E为AD中点. (Ⅰ)证明:PE⊥BC(Ⅱ)若==60°,求直线PA】;主要考察你对空间几何体的结构特征等知识点的理解。[详细]
举一反三
(本题满分14分)已知为平行四边形,是长方形,的中点,平面平面

(Ⅰ)求证:
(Ⅱ)求直线与平面
   成角的正切值.
题型:不详难度:| 查看答案
如图,已知三棱柱ABC﹣A1B1C1中,AA1⊥平面ABC,AB=BC,∠ABC=90°,D为AC中点.
(1)求证:BD⊥AC1
(2)若AB=,AA1=,求AC1与平面ABC所成的角.
 
题型:不详难度:| 查看答案
已知一个凸多面体共有9个面,所有棱长均为1,其平面展开图如右图所示,则该凸多面体的体积(     )
A.B.1C.D.

题型:不详难度:| 查看答案
斜三棱柱ABC- A1B1C1中,二面角C-A1A-B为120°,侧棱AA1于另外两条棱的距离分别为7cm、8cm,AA1=12cm,则斜三棱柱的侧面积为______      .
题型:不详难度:| 查看答案
(本小题满分12分)(注意:在试题卷上作答无效)
如图,四棱锥S-ABCD中,SD底面ABCDAB//DCADDCAB=AD=1,DC=SD=2,E为棱SB上的一点,平面EDC平面SBC .
(Ⅰ)证明:SE=2EB
(Ⅱ)求二面角A-DE-C的大小 .
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.