当前位置:高中试题 > 数学试题 > 空间几何体的结构特征 > 如下图所示,在单位正方体ABCD—A1B1C1D1的面对角线A1B上存在一点P使得AP+D1P取得最小值,则此最小值为(   )A.2B.C.2+D....
题目
题型:不详难度:来源:
如下图所示,在单位正方体ABCD—A1B1C1D1的面对角线A1B上存在一点P使得AP+D1P取得最小值,则此最小值为(   )

A.2B.
C.2+D.

答案
D
解析
略       
核心考点
试题【如下图所示,在单位正方体ABCD—A1B1C1D1的面对角线A1B上存在一点P使得AP+D1P取得最小值,则此最小值为(   )A.2B.C.2+D.】;主要考察你对空间几何体的结构特征等知识点的理解。[详细]
举一反三
已知是不同的直线,是不重合的平面,给出下列命题:
①若
②若
③若
是两条异面直线,若
上述命题中,真命题的序号是______________(写出所有真命题的序号).
题型:不详难度:| 查看答案
如图,在正三棱柱ABCA1B1C1中,底面边长为DBC中点,MBB1上,且
.
(1)求证:
(2)求四面体的体积.
题型:不详难度:| 查看答案
如图,ABCD是边长为2的正方形,ABEF是矩形,且二面角CABF是直二面角,AF=1,GEF的中点.

(1)求证:平面AGC平面BGC
(2)求GB与平面AGC所成角的正弦值.
题型:不详难度:| 查看答案
(12分)如图,在多面体ABCDEF中,四边形ABCD是正方形,AB=2EF=2,EF∥AB,EF⊥FB,∠BFC=90°,BF=FC,H为BC的中点,

(Ⅰ)求证:FH∥平面EDB;
(Ⅱ)求证:AC⊥平面EDB;
(Ⅲ)求四面体B—DEF的体积.
题型:不详难度:| 查看答案
(12分)如图所示,在直四棱柱中,, ,点是棱上一点.

(Ⅰ)求证:
(Ⅱ)求证:
(Ⅲ)试确定点的位置,使得平面平面.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.