当前位置:高中试题 > 数学试题 > 空间几何体的结构特征 > 如图,矩形中,,沿对角线将折起到的位置,且在平面内的射影落在边上,则二面角的平面角的正弦值为(              )A.B.C.D....
题目
题型:不详难度:来源:
如图,矩形中,,沿对角线折起到的位置,且在平面内的射影落在边上,则二面角的平面角的正弦值为(              )
A.B.
C.D.

答案
A
解析

核心考点
试题【如图,矩形中,,沿对角线将折起到的位置,且在平面内的射影落在边上,则二面角的平面角的正弦值为(              )A.B.C.D.】;主要考察你对空间几何体的结构特征等知识点的理解。[详细]
举一反三
(本小题满分12分)
如图, 在直三棱柱ABC-A1B1C1中,AC=3,BC=4,,AA1=4,点D是AB的中点.
(Ⅰ)求证:AC⊥BC1
(Ⅱ)求二面角的平面角的正切值.

题型:不详难度:| 查看答案
(本小题满分14分)如图:直平行六面体ABCD-A1B1C1D1,底面ABCD是边长为2a的菱形,∠BAD=600,E为AB中点,二面角A1-ED-A为600
(I)求证:平面A1ED⊥平面ABB1A1
(II)求二面角A1-ED-C1的余弦值;
(III)求点C1到平面A1ED的距离。
题型:不详难度:| 查看答案
棱长为3的正三棱柱内接于球O中,则球O的表面积为
A.36B.21C.9D.8

题型:不详难度:| 查看答案
(本小题12分)四棱锥P-ABCD中,PA⊥底面ABCD,AB∥CD,AD=CD=1,∠BAD=120°,PA=,∠ACB=90°。
(1)求证:BC⊥平面PAC;
(2)求二面角D-PC-A的大小的正切值;
(3)求点B到平面PCD的距离。
题型:不详难度:| 查看答案
已知E,F分别是正方体ABCD-A1B1C1D1的棱BC和CD的中点,求:
(1)A1D与EF所成角的大小;
(2)A1F与平面B1EB所成角;
(3)二面角C-D1B1-B的大小.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.