当前位置:高中试题 > 数学试题 > 空间几何体的结构特征 > (本小题满分14分)已知在四棱锥P-ABCD中,底面ABCD是边长为4的正方形,△PAD是正三角形,平面PAD⊥平面ABCD,E、F、G分别是PA、PB、BC的...
题目
题型:不详难度:来源:
(本小题满分14分)已知在四棱锥P-ABCD中,底面ABCD是边长为4的正方形,△PAD是正三角形,平面PAD⊥平面ABCDEFG分别是PAPBBC的中点.
(I)求证:EF平面PAD
(II)求平面EFG与平面ABCD所成锐二面角的大小;
答案
(I)证明略;
(II)
解析
方法1:(I)证明:∵平面PAD⊥平面ABCD
平面PAD,                                           …………(4分)
EFPAPB的中点,
EF//AB,∴EF平面PAD;                                  …………(6分)
(II)解:过P作AD的垂线,垂足为O,
,则PO 平面ABCD
取AO中点M,连OG,,EO,EM,
∵EF //AB//OG,
∴OG即为面EFG与面ABCD的交线…………(8分)
又EM//OP,则EM平面ABCD.且OGAO,
故OGEO ∴ 即为所求      …………(11分)
 ,EM=OM=1 
∴tan              
∴平面EFG与平面ABCD所成锐二面角的大小是  …………(14分)

方法2:(I)证明:过PP O ADO,∵
PO 平面ABCD,连OG,以OGODOPx、yz轴建立空间坐标系,………(2分)
PAPD ,∴

,      …………(4分)


EF 平面PAD;                        …………(6分)
(II)解:
设平面EFG的一个法向量为 
,   …………(11分)
平面ABCD的一个法向量为……(12分)
平面EFG与平面ABCD所成锐二面角的余弦值是:
,锐二面角的大小是;             …………(14分

核心考点
试题【(本小题满分14分)已知在四棱锥P-ABCD中,底面ABCD是边长为4的正方形,△PAD是正三角形,平面PAD⊥平面ABCD,E、F、G分别是PA、PB、BC的】;主要考察你对空间几何体的结构特征等知识点的理解。[详细]
举一反三
(本小题满分14分)
如图,在直四棱柱ABCD-ABCD中,底面ABCD为等腰梯形,AB//CD,AB="4," BC="CD=2, "
AA="2, " E、E分别是棱AD、AA的中点.   
(1)设F是棱AB的中点,证明:直线EE//平面FCC
(2)证明:平面D1AC⊥平面BB1C1C.
题型:不详难度:| 查看答案
(本小题满分12分)
如图,在四棱锥P-ABCD中,底面ABCD是矩形,M、N分别为PA、BC的中点,PD⊥平面ABCD,且PD=AD=,CD=1
(1)证明:MN∥平面PCD;
(2)证明:MC⊥BD;
(3)求二面角A—PB—D的余弦值。
题型:不详难度:| 查看答案
(本小题满分12分)
如图,四棱锥P—ABCD的底面ABCD是边长为2的菱形,,E是CD的中点,PA底面ABCD,PA=4
(1)证明:若F是棱PB的中点,求证:EF//平面PAD;
(2)求平面PAD和平面PBE所成二面角(锐角)的大小。
题型:不详难度:| 查看答案
已知点在球心为的球面上,的内角所对应的边长分别为,且,球心到截面的距离为,则该球的表面积为           .
题型:不详难度:| 查看答案
(本小题满分12分)
如图,在四棱锥中,底面ABCD为菱形,底面的中点,的中点,求证:
(1)平面
(2).
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.