当前位置:高中试题 > 数学试题 > 空间几何体的结构特征 > (12分)如图所示,在直三棱柱ABC-A1B1C1中,AB=BB1,AC1⊥平面A1BD,D为AC的中点。(1)求证:B1C1⊥平面ABB1A1;(2)在CC1...
题目
题型:不详难度:来源:
(12分)如图所示,在直三棱柱ABC-A1B1C1中,AB=BB1,AC1⊥平面A1BD,D为AC的中点。
(1)求证:B1C1⊥平面ABB1A1;
(2)在CC1上是否存在一点E,使得∠BA1E=45°,若存在,试确定E的位置,并判断平面A1BD与平面BDE是否垂直?若不存在,请说明理由。
答案

解析
(1)∵AB=B1B
∴四边形ABB1A1为正方形,
∴A1B⊥AB1
又∵AC1⊥面A1BD,
∴AC1⊥A1B,
∴A1B⊥面AB1C1,
∴A1B⊥B1C1
又在直棱柱ABC-A1B1C1中,BB1⊥B1C1,
∴B1C1⊥平面ABB1A1…………………………………………6分
(2)证明:设AB=BB1=a,CE=x,
∵D为AC的中点,且AC1⊥A1D,
∴A1B=A1C1=a
又∵B1C1⊥平面ABB1A1,B1C1⊥A1B1
∴B1C1=a,BE=
A1E=
在△A1BE中,由余弦定理得
BE2=A1B2+A1E2-2A1B·A1E·cos45°,
即a2+x2=2a2+3a2+x2-2ax-2·
=2a-x,解得x=a,即E是C1C的中点
∵  D.E分别为A    C.C1C的中点,∴DE∥AC1
∵AC1⊥平面A1BD,∴DE⊥平面A1BD
又∵PE平面BDE,∴平面ABD⊥平面BDE…………………………12分
核心考点
试题【(12分)如图所示,在直三棱柱ABC-A1B1C1中,AB=BB1,AC1⊥平面A1BD,D为AC的中点。(1)求证:B1C1⊥平面ABB1A1;(2)在CC1】;主要考察你对空间几何体的结构特征等知识点的理解。[详细]
举一反三
如图,在四棱锥A—BCDE中,底面BCDE为矩形,AB=AC,BC=2,CD=1,并且侧面底面BCDE。
(1)取CD的中点为F,AE的中点为G,证明:FG//面ABC;
(2)试在线段BC上确定点M,使得AEDM,并加以证明。
题型:不详难度:| 查看答案
(本小题共14分)在四棱锥中,底面是矩形,平面. 以的中点为球心、为直径的球面交于点,交于点.
(1)求证:平面⊥平面      
(2)求直线与平面所成的角的正弦值.
题型:不详难度:| 查看答案
(本小题满分14分)如图,在三棱锥中,底面
分别在棱上,且  
(1)求证:平面
(2)当的中点时,求与平面所成的角的正弦值;
(3)是否存在点使得二面角为直二面角?并说明理由.
题型:不详难度:| 查看答案
(13分)在多面体ABCDEFG中,底面ABCD是等腰梯形,,,H是棱EF的中点
(1)证明:平面平面CDE;
(2)求平面FGB与底面ABCD所成锐二面角的正切值。
 
题型:不详难度:| 查看答案
如图,△PAB所在的平面α和四边形ABCD所在
的平面β互相垂直,且,AD=4,
BC=8,AB=6,若
则点P在平面内的轨迹是          (      )
A.圆的一部分B.椭圆的一部分
C.双曲线的一部分D.抛物线的一部分

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.