当前位置:高中试题 > 数学试题 > 空间几何体的结构特征 > (本小题满分12分)如图,直平行六面体ABCD-A1B1C1D1的高为3,底面是边长为4, 且∠BAD=60°的菱形,AC∩BD=O,A1C1∩B1D1=O1,...
题目
题型:不详难度:来源:
(本小题满分12分)
如图,直平行六面体ABCD-A1B1C1D1的高为3,
底面是边长为4, 且∠BAD=60°的菱形,AC∩
BD=O,A1C1∩B1D1=O1,E是线段AO1上一点.
(Ⅰ)求点A到平面O1BC的距离;
(Ⅱ)当AE为何值时,二面角E-BC-D的大小为.
答案

(1)
(2) AE=AO1=
解析
解:(Ⅰ) 设A到平面O1BC距离为d.
,得 .
由直四棱柱ABCD—A1B1C1D1的高为3,底面是边长为4且∠BAD=的菱形.
∴|O1B1|=|A1B1|="2.   " ∴.
.
由余弦定理得.
.
…………………6分
(Ⅱ)过E作垂直AC,垂足为,过,垂足为M,连结EM .
由三垂线定理得EM⊥CB,  ∴为二面角E—BC—D的平面角.
,设M=x,则 

此时与OO1重合,∴AE=AO1=.……………………………………12分
核心考点
试题【(本小题满分12分)如图,直平行六面体ABCD-A1B1C1D1的高为3,底面是边长为4, 且∠BAD=60°的菱形,AC∩BD=O,A1C1∩B1D1=O1,】;主要考察你对空间几何体的结构特征等知识点的理解。[详细]
举一反三
(12分)如图,在四棱锥P—ABCD中,PA⊥平面ABCD,四边形ABCD为直角梯形,AD//BC且AD﹥BC,∠DAB=∠ABC=90°,PA=,AB=BC=1。M为PC的中点。

(1)求二面角M—AD—C的大小;(6分)
(2)如果∠AMD=90°,求线段AD的长。(6分)
题型:不详难度:| 查看答案
(本小题满分12分)
如图,在体积为1的三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,AB⊥AC,AC=AA1=1,P为线段AB上的动点.

(1)求证:CA1⊥C1P;
(2)当AP为何值时,二面角C1-PB1-A1的大小为?
题型:不详难度:| 查看答案
(本小题满分12分)
如图,在三棱锥中,, 点分别在棱上,且

(I)求证:平面
(II)当的中点时,求与平面所成的角的大小;
(III)是否存在点使得二面角为直二面角?并说明理由.
题型:不详难度:| 查看答案
对于不重合的两个平面α与β,给定下列条件:
①存在平面γ,使得α、β都平行于γ;
②存在平面γ,使得α、β都垂直于γ;
③α内有不共线的三点到β的距离相等;
④存在异面直线l,m,使得l//α,l//β,m//α,m//β;
A.1个B.2个C.3个D.4个

题型:不详难度:| 查看答案
如图,动点P在正方体ABCD—A1B1C1D1的对角线BD1上,过点P作垂直于平面BB1D1D的直线,与正方体表面交于M、N,设BP=x,MN=y,则函数的图象大致是

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.