当前位置:高中试题 > 数学试题 > 空间几何体的结构特征 > (本小题满分12分)如图,在多面体ABCDEF中,ABCD是正方形,AB=2EF=2,,EF⊥FB,∠BFC=,BF=FC,H为BC的中点.(Ⅰ)求证:平面ED...
题目
题型:不详难度:来源:
(本小题满分12分)

如图,在多面体ABCDEF中,ABCD是正方形,AB=2EF=2,EFFB,∠BFC=BF=FCHBC的中点.
(Ⅰ)求证:平面EDB
(Ⅱ)求证:AC⊥平面EDB
(Ⅲ)求四面体BDEF的体积.
答案

解:


解析

核心考点
试题【(本小题满分12分)如图,在多面体ABCDEF中,ABCD是正方形,AB=2EF=2,,EF⊥FB,∠BFC=,BF=FC,H为BC的中点.(Ⅰ)求证:平面ED】;主要考察你对空间几何体的结构特征等知识点的理解。[详细]
举一反三
(13分)已知在四棱锥P一ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=1,AB=2,E、F分别是AB、PD的中点。
(Ⅰ)求证:AF∥平面PEC;
(Ⅱ)求PC与平面ABCD所成角的正切值;
(Ⅲ)求二面角P一EC一D的正切值。
题型:不详难度:| 查看答案
若直线,则的关系是__________.
题型:不详难度:| 查看答案
(本题12分)
如图,ABCD是平行四边形,

(1)求证:
(2)求证:
题型:不详难度:| 查看答案
(本题12分)
在长方体的中点。
(1)求直线 
(2)作
题型:不详难度:| 查看答案
如图,四棱锥P-ABCD中,PA⊥底面ABCD,,AD=CD=1,∠=120°,=,∠=90°,M是线段PD上的一点(不包括端点).

(1)求证:BC⊥平面PAC;
(2)求异面直线AC与PD所成的角的余弦值;
(3)若点M为侧棱PD中点,求直线MA与平面PCD
所成角的正弦值.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.