当前位置:高中试题 > 数学试题 > 空间几何体的结构特征 > (本小题满分12分)如图,在三棱锥中,底面ABC,,AP="AC," 点,分别在棱上,且BC//平面ADE(Ⅰ)求证:DE⊥平面;(Ⅱ)当二面角为直二面角时,求...
题目
题型:不详难度:来源:
(本小题满分12分)
如图,在三棱锥中,底面ABC,
AP="AC," 点分别在棱上,且BC//平面ADE
(Ⅰ)求证:DE⊥平面
(Ⅱ)当二面角为直二面角时,求多面体ABCED与PAED的体积比。
答案
解:(Ⅰ)BC//平面ADE, BC平面PBC, 平面PBC平面ADE=DE
BC//ED                                …………2分
∵PA⊥底面ABC,BC底面ABC ∴PA⊥BC. ………3分
,∴AC⊥BC.
∵PAAC="A," ∴BC⊥平面PAC.           …………5分
∴DE⊥平面.                       …………6分
(Ⅱ)由(Ⅰ)知, DE⊥平面PAC,
又∵AE平面PAC,PE平面PAC,∴DE⊥AE,DE⊥PE,
∴∠AEP为二面角的平面角,    …………8分
,即AE⊥PC,                 …………9分
∵AP="AC," ∴E是PC的中点,ED是PBC的中位线。………10分
                        ………12分
解析

核心考点
试题【(本小题满分12分)如图,在三棱锥中,底面ABC,,AP="AC," 点,分别在棱上,且BC//平面ADE(Ⅰ)求证:DE⊥平面;(Ⅱ)当二面角为直二面角时,求】;主要考察你对空间几何体的结构特征等知识点的理解。[详细]
举一反三

如图:四棱锥P-ABCD的底面为矩形,且AB=BC,E、F分别为棱AB、PC的中点。

(1)求证:EF//平面PAD;
(2)若点P在平面ABCD内的正投影O在直线AC上,求证:平面PAC⊥平面PDE
题型:不详难度:| 查看答案
((本小题满分12分)

如图,DC⊥平面ABCEB // DCAC =BC = EB = 2DC=2,∠ACB=120°,
PQ分别为AEAB的中点。
(1)证明:PQ //平面ACD;   
(2)求AD与平面ABE所成角的正弦值。
题型:不详难度:| 查看答案
本小题满分14分)如图,四棱锥E—ABCD中,ABCD是矩形,平面EAB平面ABCD,AE=EB=BC=2,F为CE上的点,
且BF平面ACE.
(1)求证:AEBE;
(2)求三棱锥D—AEC的体积;
(3)求二面角A—CD—E的余弦值.
题型:不详难度:| 查看答案

(本小题满分12分)如图,已知平面平面等边三角形,中点.
                     
(1)求证:平面
(2)求证:平面平面
(3)求直线与平面所成角的正弦值.
题型:不详难度:| 查看答案
(本小题满分14分)如图,四边形为矩形,平面,平面于点,且点上,点是线段的中点。
(1)求证:
(2)求三棱锥的体积;
(3)试在线段上确定一点,使得平面
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.