当前位置:高中试题 > 数学试题 > 空间几何体的结构特征 > 在正方体ABCD-A1B1C1D1中,O是底面ABCD的中心,M、N分别是棱DD1、D1C1的中点,则直线OM(  )A.和AC、MN都垂直B.垂直于AC,但不...
题目
题型:不详难度:来源:
在正方体ABCD-A1B1C1D1中,O是底面ABCD的中心,M、N分别是棱DD1、D1C1的中点,则直线OM
(  )
A.和AC、MN都垂直
B.垂直于AC,但不垂直于MN
C.垂直于MN,但不垂直于AC
D.与AC、MN都不垂直
答案
A
解析
此题的条件使得建立空间坐标系方便,且选项中研究的位置关系也适合用空间向量来证明其垂直关系,故应先建立坐标系,设出边长,据几何特征,给出各点的坐标,验证向量内积是否为零.
解:以DA、DC、DD1所在的直线为x轴、y轴、z轴建立空间直角坐标系.设正方体的棱长为2a,则D(0,0,0)、D1(0,0,2a)、M(0,0,a)、A(2a,0,0)、C(0,2a,0)、O(a,a,0)、N(0,a,2a).
=(-a,-a,a),=(0,a,a),=(-2a,2a,0).
?=0,?=0,
∴OM⊥AC,OM⊥MN.
故选A.
核心考点
试题【在正方体ABCD-A1B1C1D1中,O是底面ABCD的中心,M、N分别是棱DD1、D1C1的中点,则直线OM(  )A.和AC、MN都垂直B.垂直于AC,但不】;主要考察你对空间几何体的结构特征等知识点的理解。[详细]
举一反三
如图,已知六棱锥P-ABCDEF的底面是正六边形,PA⊥平面ABC,PA=2AB,则下列结论中:

①PB⊥AE;②平面ABC⊥平面PBC;③直线BC∥平面PAE;④∠PDA=45°.
其中正确的有________(把所有正确的序号都填上)
题型:不详难度:| 查看答案
如图所示,在三棱锥P-ABC中,PA⊥平面ABC,AB=BC=CA=3,M为AB的中点,四点P、A、M、C都在球O的球面上.

(1)证明:平面PAB⊥平面PCM;
(2)证明:线段PC的中点为球O的球心
题型:不详难度:| 查看答案
如图所示,四棱锥P-ABCD中,PD⊥平面ABCD,PA与平面ABCD所成的角为60°,在四边形ABCD中,∠D=∠DAB=90°,AB=4,CD=1,AD=2.
(1)建立适当的坐标系,并写出点B,P的坐标;
(2)求异面直线PA与BC所成角的余弦值;
(3)若PB的中点为M,求证:平面AMC⊥平面PBC.
题型:不详难度:| 查看答案
(本小题满分14分)
如图,在四棱锥P-ABCD中,PD⊥平面ABCD,四边形ABCD是菱形,AC=6,BD=8,E是PB上任意一点。

(1)求证:AC⊥DE;
(2)若PB与平面ABCD所成角为450,E是PB上的中点。
求三棱锥P-AED的体积.
题型:不详难度:| 查看答案
(本小题满分14分)
如图,在四棱锥P-ABCD中,底面ABCD是菱形,∠BAD=,AB=2,PA=1,PA⊥平面ABCD,E是PC的中点,F是AB的中点.

(1)求证:BE∥平面PDF;
(2)求证:平面PDF⊥平面PAB;
(3)求三棱锥P-DEF的体积.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.