当前位置:高中试题 > 数学试题 > 空间几何体的结构特征 > 在直三棱柱ABC—A1B1C1中,B1C1=A1C1,AC1⊥A1B,M、N分别是A1B1,AB的中点,给出如下三个结论:①C1M⊥平面ABB1A1;②A1B⊥...
题目
题型:不详难度:来源:
在直三棱柱ABC—A1B1C1中,B1C1=A1C1,AC1⊥A1B,M、N分别是A1B1,AB的中点,给出如下三个结论:①C1M⊥平面ABB1A1;②A1B⊥AM;③平面AMC1∥平面CNB1;其中正确结论的个数是(   )
A.0B.1C. 2D.3

答案
D
解析


核心考点
试题【在直三棱柱ABC—A1B1C1中,B1C1=A1C1,AC1⊥A1B,M、N分别是A1B1,AB的中点,给出如下三个结论:①C1M⊥平面ABB1A1;②A1B⊥】;主要考察你对空间几何体的结构特征等知识点的理解。[详细]
举一反三
若棱长均为2的正三棱柱内接于一个球,则该球的半径为[]
A.B.C.D.

题型:不详难度:| 查看答案
下面一组图形为三棱锥PABC的底面与三个侧面.已知ABBCPAABPAAC.

(1)在三棱锥PABC中,求证:平面ABC⊥平面PAB
(2)在三棱锥PABC中,MPA的中点,且PABC=3,AB=4,求三棱锥PMBC的体积.
题型:不详难度:| 查看答案
如图,正四棱锥中,侧棱与底面所成角的正切值为
(1)求侧面与底面所成二面角的大小;
(2)若E是PB中点,求异面直线PD与AE所成角的正切值.

题型:不详难度:| 查看答案
如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC=2,E是PC的中点,作EF⊥PB交PB于点F.
(1)证明 PA//平面EDB;
(2)证明PB⊥平面EFD;
(3)求.

题型:不详难度:| 查看答案
在正四棱柱中,若=,则异面直线所成角的余弦值为  (    )
A.B.C.D.

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.