当前位置:高中试题 > 数学试题 > 排列、组合 > 设有编号为1,2,3,4,5的五个球和编号为1,2,3,4,5的五个盒子,现将这5 个球投放在这5个盒内,要求每个盒内投放一个球,并且恰有两个球的编号与盒子的编...
题目
题型:不详难度:来源:
设有编号为1,2,3,4,5的五个球和编号为1,2,3,4,5的五个盒子,现将这5 个球投放在这5个盒内,要求每个盒内投放一个球,并且恰有两个球的编号与盒子的编号相同,则这样的投放方法的总数为(    )
A.20B.30C.60D.120

答案
A
解析

试题分析:本题是一个排列、组合及简单计数问题,只有两个小球的编号与盒子号一致,则首先从5个号码中,选出两个号码,有 =10种结果,其余的三个盒子与小球的编号不同,则第一个球有两种选择,另外两个球的位置确定,共有2种结果,相乘得到结果.解:由题意知本题是一个排列、组合及简单计数问题,有且只有两个小球的编号与盒子号一致,则首先从5个号码中,选出两个号码,有=10种结果,其余的三个小球与盒子的编号不同,则第一个小球有两种选择,另外两个小球的位置确定,编号不同的放法共有2种结果,根据分步计数原理得到共有10×2=20种结果,故答案为A
点评:本题考查排列组合及简单计数问题,这是一个典型的排列组合问题,本题解题的关键是当两个相同的号码确定以后,其余的三个号码不同的排法共有2种结果,这里容易出错,本题是一个中档题目
核心考点
试题【设有编号为1,2,3,4,5的五个球和编号为1,2,3,4,5的五个盒子,现将这5 个球投放在这5个盒内,要求每个盒内投放一个球,并且恰有两个球的编号与盒子的编】;主要考察你对排列、组合等知识点的理解。[详细]
举一反三
从5位同学中选派4位同学在星期五、星期六、星期日参加公益活动,每人一天,要求星期五有2人参加,星期六、星期日各有1人参加,则不同的选派方法共有(  )
A.40种B.60种C.100种D.120种

题型:不详难度:| 查看答案
从0,1,2,3,4,5六个数中任取四个互异的数字组成四位数,个位,百位上必排偶数数字的四位数共有(    )
A.52个B.60个C.54D.66个

题型:不详难度:| 查看答案
三个女生和五个男生排成一排.
(1)如果女生必须全排在一起,有多少种不同的排法?
(2)如果女生必须全分开,有多少种不同的排法?
(3)如果两端都不能排女生,有多少种不同的排法?
(4)如果两端不能都排女生,有多少种不同的排法?
题型:不详难度:| 查看答案
甲乙丙3位同学选修课程,从4门课程中选。甲选修2门,乙丙各选修3门,则不同的选修方案共有
A.36种B.48种C.96种D.1 92种

题型:不详难度:| 查看答案
从4种不同的蔬菜品种中选出3种,分别种在3块不同的土质的土地上进行试验,共有种植方
法数为(  )
A.B.C.D.

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.