当前位置:高中试题 > 数学试题 > 函数极值与最值 > 已知函数f(x)=x3-(2a+1)x2+3a(a+2)x+1,a∈R。(1)当a=0时,求曲线y=f(x)在点(3,f(3))处的切线方程; (2)当a=-1...
题目
题型:广东省模拟题难度:来源:
已知函数f(x)=x3-(2a+1)x2+3a(a+2)x+1,a∈R。
(1)当a=0时,求曲线y=f(x)在点(3,f(3))处的切线方程;
(2)当a=-1时,求函数y=f(x)在[0,4]上的最大值和最小值;
(3)当函数y=f′(x)在(0,4)上有唯一的零点时,求实数a的取值范围.
答案

解:(1)当a=0时,,∴f(3)=1,
,曲线在点(3,1)处的切线的斜率
∴所求的切线方程为y-1=3(x-3),即y=3x-8。
(2)当a=-1时,函数
,令f′(x)=0得
当x∈(0,1)时,f′(x)<0,即函数y=f(x)在(0,1)上单调递减,
当x∈(1,4)时,f′(x)>0,即函数y=f(x)在(1,4)上单调递增,
∴函数y=f(x)在[0,4]上有最小值,

∴当a=-1时,函数y=f(x)在[0,4]上的最大值和最小值分别为
(3)∵

①当时,3a=a+2,解得a=1,这时
函数y=f′(x)在(0,4)上有唯一的零点,故a=1为所求;
②当时,即,这时
又函数y=f′(x)在(0,4)上有唯一的零点,

③当时,即a<1,这时
又函数y=f′(x)在(0,4)上有唯一的零点,

综上得当函数y=f′(x)在(0,4)上有唯一的零点时,或a=1。

核心考点
试题【已知函数f(x)=x3-(2a+1)x2+3a(a+2)x+1,a∈R。(1)当a=0时,求曲线y=f(x)在点(3,f(3))处的切线方程; (2)当a=-1】;主要考察你对函数极值与最值等知识点的理解。[详细]
举一反三
已知函数f(x)=2lnx-x2(x>0)。
(1)求函数f(x)的单调区间与最值;
(2)若方程2xlnx+mx-x3=0在区间[,e]内有两个不相等的实根,求实数m的取值范围;(其中e为自然对数的底数)
(3)如果函数g(x)=f(x)-ax的图像与x轴交于两点A(x1,0),B(x2,0),且0<x1<x2,求证:g′(px1+qx2)<0(其中,g′(x)是g(x)的导函数,正常数p,q满足p+q=1,q>p)
题型:江苏模拟题难度:| 查看答案
已知函数f(x)=x+alnx,其中a为常数,且a≤-l,
(Ⅰ)当a=-l时,求f(x)在[e,e2](e=2.718 28…)上的值域;
(Ⅱ)若f(x)≤e-l对任意x∈[e,e2] 恒成立,求实数a的取值范围。
题型:北京期中题难度:| 查看答案
已知a∈R,函数f(x)=+lnx-1,g(x)=(lnx-1)ex+x(其中e为自然对数的底数).
(Ⅰ)求函数f(x)在区间(0,e]上的最小值;
(Ⅱ)是否存在实数x0∈(0,e],使曲线y=g(x)在点x=x0处的切线与y轴垂直?若存在,求出x0的值;若不存在,请说明理由.
题型:广东省模拟题难度:| 查看答案
a,b∈R,a>0)。
(Ⅰ)当λ1=1,λ2=0时,设x1,x2是f(x)的两个极值点,
①如果x1<1<x2<2,求证:f′(-1)>3;
②如果a≥2,且x2-x1=2且x∈(x1,x2)时,函数g(x)=f′(x)+2(x-x2)的最小值为h(a),求h(a)的最大值;
(Ⅱ)当λ1=0,λ2=1时,
①求函数y=f(x)-3(ln3+1)x的最小值;
②对于任意的实数a,b,c,当a+b+c=3时,求证:3a·a+3b·b+3c·c≥9。
题型:浙江省模拟题难度:| 查看答案
两县城A和B相距20 km,现计划在两县城外,以AB为直径的半圆弧上选择一点C建造垃圾处理厂,其对城市的影响度与所选地点到城市的距离有关,对城A和城B的总影响度为对城A与城B的影响度之和,记C点到城A的距离为x km,建在C处的垃圾处理厂对城A和城B的总影响度为y,统计调查表明:垃圾处理厂对城A的影响度与所选地点到城A的距离的平方成反比,比例系数为4;对城B的影响度与所选地点到城B的距离的平方成反比,比例系数为k,当垃圾处理厂建在的中点时,对城A和城B的总影响度为0.065,
(Ⅰ)将y表示成x的函数;
(Ⅱ)讨论(Ⅰ)中函数的单调性,并判断弧上是否存在一点,使建在此处的垃圾处理厂对城A和城B的总影响度最小?若存在,求出该点到城A的距离;若不存在,说明理由.

题型:湖南省模拟题难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.