当前位置:高中试题 > 数学试题 > 函数极值与最值 > 某乡镇所属A村、B村、C村位于一个边长为a公里的正三角形的三顶点上,乡镇在对外经济改革开放政策中已获得一外资项目,准备在位于∠BAC的角平分线上的选址E处(记∠...
题目
题型:月考题难度:来源:
某乡镇所属A村、B村、C村位于一个边长为a公里的正三角形的三顶点上,乡镇在对外经济改革开放政策中已获得一外资项目,准备在位于∠BAC的角平分线上的选址E处(记∠EBD=θ),修建一农副产品加工厂,要求使得E到三村的中敦f(θ)尽可能的小.
(1)试求出f(θ)关于a的函数关系式;
(2)间θ为何值时,f(θ)最小?试述理由.
答案
解:(1)由题意得

∴f(θ)=2BE+a﹣ED=(0≤θ≤);
(2)构造函数(0≤θ≤),
(0≤θ≤);
令g"(θ)=0,可得sinθ=
∵0≤θ≤
∴θ=
当0≤θ<时,g"(θ)<0,函数单调递减,
<θ≤时,g"(θ)>0,函数单调递增
所以θ=时,取得最小值
因为a>0,所以取得最小值时,f(θ)最小为a,
此时θ=
核心考点
试题【某乡镇所属A村、B村、C村位于一个边长为a公里的正三角形的三顶点上,乡镇在对外经济改革开放政策中已获得一外资项目,准备在位于∠BAC的角平分线上的选址E处(记∠】;主要考察你对函数极值与最值等知识点的理解。[详细]
举一反三
已知函数f(x)=x2﹣cosx,x∈[﹣  ]的值域是(    ).
题型:期末题难度:| 查看答案
某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,左右两端均为半球形,按照设计要求容器的体积为立方米,且l≥2r.假设该容器的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为3千元,半球形部分每平方米建造费用为c(c>3)千元.设该容器的建造费用为y千元.
(Ⅰ)写出y关于r的函数表达式,并求该函数的定义域;
(Ⅱ)求该容器的建造费用最小时的r.
题型:月考题难度:| 查看答案
设函数设函数f(x)定义在(0,+∞)上,f(1)=0,导函数,g(x)=f(x)+f"(x).
(1)求g(x)的单调区间和最小值;
(2)讨论g(x)与的大小关系;
(3)是否存在x0>0,使得对任意x>0成立?若存在,求出x0的取值范围;若不存在,请说明理由.
题型:月考题难度:| 查看答案
已知函数f(x)=x3+ax2+bx+c,点P(1,f(1))在函数y=f(x)的图象上,过P点的切线方程为y=3x+1.
(1)若y=f(x)在x=﹣2时有极值,求f(x)的解析式;
(2)在(1)的条件下是否存在实数m,使得不等式f(x)≥m在区间[﹣2,1]上恒成立,若存在,试求出m的最大值,若不存在,试说明理由.
题型:期末题难度:| 查看答案
已知a为正实数,n为自然数,抛物线与x轴正半轴相交于点A,设f(n)为该抛物线在点A处的切线在y轴上的截距。
(1)用a和n表示f(n);
(2)求对所有n都有成立的a的最小值;
(3)当0<a<1时,比较的大小,并说明理由
题型:高考真题难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.