当前位置:高中试题 > 数学试题 > 函数极值与最值 > 若函数f(x)满足:在定义域内存在实数x0,使f(x0+k)=f(x0)+f(k)(k为常数),则称“f(x)关于k可线性分解”.(1)函数f(x)=2x+x2...
题目
题型:成都模拟难度:来源:
若函数f(x)满足:在定义域内存在实数x0,使f(x0+k)=f(x0)+f(k)(k为常数),则称“f(x)关于k可线性分解”.
(1)函数f(x)=2x+x2是否关于1可线性分解?请说明理由;
(2)已知函数g(x)=lnx-ax+1(a>0)关于a可线性分解,求a的范围;
(3)在(2)的条件下,当a取最小整数时;
(i)求g(x)的单调区间;
(ii)证明不等式:(n!)2≤en(n-1)(n∈N*).
答案
(1)函数f(x)=2x+x2是关于1可线性分解,理由如下:
令h(x)=f(x+1)-f(x)-f(1)=2x+1+(x+1)2-2x-x2-2-1=2(2x-1+x-1)
∴h(0)=-1<0,h(1)=2
∴h(x)在(0,1)上至少有一个零点
即存在x0∈(0,1),使f(x0+1)=f(x0)+f(1);
(2)由已知,存在实数x0,使g(x0+a)=g(x0)+g(a)(a为常数),
即ln(x0+a)-a(x0+a)+1=lnx0-ax0+1+lnx-a2+1
ln
x0+a
ax0
=1
x0+a
ax0
=e

∴x0=
a
ae-1
>0

∵a>0,∴a>
1
e

(3)(i)由(2)知,a=1,g(x)=lnx-x+1,g′(x)=
1-x2
x
(x>0)
∴x∈(0,1)时,g′(x)>0,∴g(x)的增区间是(0,1);x∈(1,+∞)时,g′(x)<0,∴g(x)的减区间是(1,+∞);
(ii)证明:由(i)知x∈(0,+∞),g(x)≤g(1),即lnx-x+1≤0,∴lnx≤x-1
∴ln1=0,ln2<1,ln3<2,…,lnn<n-1
相加得:ln1+ln2+…+lnn≤1+2…+(n-1)
即lnn!≤
n(n-1)
2

∴(n!)2≤en(n-1)(当且仅当n=1时取“=”号).
核心考点
试题【若函数f(x)满足:在定义域内存在实数x0,使f(x0+k)=f(x0)+f(k)(k为常数),则称“f(x)关于k可线性分解”.(1)函数f(x)=2x+x2】;主要考察你对函数极值与最值等知识点的理解。[详细]
举一反三
设函数fn(x)=-xn+3ax+b(n∈N*,a,b∈R).
(1)若a=b=1,求f3(x)在[0,2]上的最大值和最小值;
(2)若对任意x1,x2∈[-1,1],都有|f3(x1)-f3(x2)|≤1,求a的取值范围;
(3)若|f4(x)|在[-1,1]上的最大值为
1
2
,求a,b的值.
题型:盐城二模难度:| 查看答案
已知f(x)=ax-1nx,x∈(0,e],g(x)=
1nx
x
,其中e是自然常数,a∈R.
(Ⅰ)当a=1时,研究f(x)的单调性与极值;
(Ⅱ)在(Ⅰ)的条件下,求证:f(x)>g(x)+
1
2

(Ⅲ)是否存在实数a,使f(x)的最小值是3?若存在,求出a的值;若不存在,说明理由.
题型:甘肃三模难度:| 查看答案
设函数f(x)=ex-
k
2
x2-x

(1)若k=0,求f(x)的最小值;
(2)若当x≥0时f(x)≥1,求实数k的取值范围.
题型:不详难度:| 查看答案
设函数f(x)=
1-a
2
x2+ax-lnx(a∈R)

(Ⅰ) 当a=1时,求函数f(x)的极值;
(Ⅱ)当a>1时,讨论函数f(x)的单调性.
(Ⅲ)若对任意a∈(3,4)及任意x1,x2∈[1,2],恒有
(a2-1)
2
m+ln2>|f(x1)-f(x2)|
成立,求实数m的取值范围.
题型:吉林二模难度:| 查看答案
已知函数f(x)=e2x-2tx,g(x)=-x2+2tex-2t2+
1
2

(1)求f(x)在区间[0,+∞)的最小值;
(2)求证:若t=1,则不等式g(x)≥
1
2
对于任意的x∈[0,+∞)恒成立;
(3)求证:若t∈R,则不等式f(x)≥g(x)对于任意的x∈R恒成立.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.