当前位置:高中试题 > 数学试题 > 函数极值与最值 > 设函数f(x)=(1+x)2-2ln(1+x)(1)若定义域内存在x0,使得不等式f(x0)-m≤0成立,求实数m的最小值;(2)g(x)=f(x)-x2-x-...
题目
题型:不详难度:来源:
设函数f(x)=(1+x)2-2ln(1+x)
(1)若定义域内存在x0,使得不等式f(x0)-m≤0成立,求实数m的最小值;
(2)g(x)=f(x)-x2-x-a在区间[0,3]上恰有两个不同的零点,求a范围.
答案
(1)存在x0,使m≥f(x0min
∵f(x)=(1+x)2-2ln(1+x),
f(x)=2(1+x)-
2
1+x

=
2x(x+2)
1+x
,x>-1.
令f′(x)>0,得x>0,
令f′(x)<0,得x<0,
∴y=f(x)在(-1,0)上单调递减,在(0,+∞)上单调递增,
∴f(x0min=f(0)=1,
∴m≥1,
∴实数m的最小值是1.
(2)∵g(x)=f(x)-x2-x-a在区间[0,3]上恰有两个不同的零点,
∴g(x)=x+1-a-2ln(1+x)在区间[0,3]上恰有两个不同的零点,
∴x+1-2ln(1+x)=a有两个交点,
令h(x)=x+1-2ln(1+x),
h(x)=1-
2
x+1
=
x-1
x+1

由h′(x)>0,得x>1,
由h′(x)<0,得x<1,
∴y=f(x)在[0,1]上单调递减,在[1,3]上单调递增,
∵h(0)=1-2ln1=1,
h(1)=2-2ln2,
h(3)=4-2ln4,
∴2-2ln2<a≤1.
核心考点
试题【设函数f(x)=(1+x)2-2ln(1+x)(1)若定义域内存在x0,使得不等式f(x0)-m≤0成立,求实数m的最小值;(2)g(x)=f(x)-x2-x-】;主要考察你对函数极值与最值等知识点的理解。[详细]
举一反三
已知函数f(x)=ax-lnx.(a为常数)
(Ⅰ)当a=1时,求函数f(x)的最小值;
(Ⅱ)求函数f(x)在[1,+∞)上的最值.
题型:不详难度:| 查看答案
已知函数f(x)=(x2+1)(x+a)(a∈R),当f′(-1)=0时,求函数y=f(x),在[-
3
2
,  1]
上的最大值和最小值.
题型:不详难度:| 查看答案
已知函数f(x)=
1
3
x3-ax2+(a2+2a)x
,a∈R.
(1)当a=-2时,求f(x)在闭区间[-1,1]上的最大值与最小值;
(2)若线段AB:y=2x+3(0≤x≤2)与导函数y=f"(x)的图象只有一个交点,且交点在线段AB的内部,试求a的取值范围.
题型:不详难度:| 查看答案
已知函数f(x)=kx3-3kx2+b,在[-2,2]上最小值为-17,最大值为3,求k、b的值.
题型:不详难度:| 查看答案
函数f(x)=
2
x
+
9
1-2x
x∈(0,
1
2
)
)的最小值为______.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.