当前位置:高中试题 > 数学试题 > 函数极值与最值 > 已知f(x)=13ax3+12bx2+cx+d的图象过原点,且在点(-1,f(-1))处的切线与x轴平行.对任意x∈R,都有x≤f′(x)≤12(x2+1).(...
题目
题型:不详难度:来源:
已知f(x)=
1
3
ax3+
1
2
bx2
+cx+d的图象过原点,且在点(-1,f(-1))处的切线与x轴平行.对任意x∈R,都有x≤f′(x)≤
1
2
(x2+1)

(1)求函数y=f(x)在点(1,f(1))处切线的斜率;
(2)求f(x)的解析式;
(3)设g(x)=12f(x)-4x2-3x-3,h(x)=
m
x
+x•lnx,对任意x1x2∈[
1
2
,2]
,都有h(x1)≥g(x2),求实数m的取值范围.
答案
(1)∵函数y=f(x)在点(1,f(1))处切线的斜率为k=f"(1),
又x≤f′(x)≤
1
2
(x2+1)
,∴1≤f′(1)≤
1
2
(1+1)
,∴k=f"(1)=1;
(2)∵f(x)=
1
3
ax3+
1
2
bx2
+cx+d,∴f′(x)=ax2+bx+c,
由f′(1)=1且f′(-1)=0,得a+b+c=1,且a-b+c=0;
b=
1
2
c=
1
2
-a

∵对x∈R,x≤f′(x)恒成立.即:ax2-
1
2
x+
1
2
-a≥0
恒成立,





a>0
△=
1
4
-4a(
1
2
-a)=4a2-2a+
1
4
≤0

a=
1
4
,∴f(x)=
1
12
x3+
1
4
x2+
1
4
x

(3)∵g(x)=12f(x)-4x2-3x-3,
∴g(x)=x3+3x2+3x-4x2-3x-3=x3-x2-3;
∴g(x)max=g(2)=1,
∴对[
1
2
,2]
,h(x)≥1恒成立
即:m≥x-x2•lnx,
令p(x)=x-x2lnx,则p"(x)=1-2x•lnx-x.
由p"(1)=0,得x∈(1,2)时,p′(x)<0,x∈(
1
2
,1)时,p′(x)>0;
∴p(x)max=p(1)=1,
∴m≥1,即m的取值范围是{x|m≥1}.
核心考点
试题【已知f(x)=13ax3+12bx2+cx+d的图象过原点,且在点(-1,f(-1))处的切线与x轴平行.对任意x∈R,都有x≤f′(x)≤12(x2+1).(】;主要考察你对函数极值与最值等知识点的理解。[详细]
举一反三
已知函数f(x)=-x3+x2+b,g(x)=alnx.
(1)若f(x)在x∈[-
1
2
,1)
上的最大值为
3
8
,求实数b的值;
(2)若对任意x∈[1,e],都有g(x)≥-x2+(a+2)x恒成立,求实数a的取值范围;
(3)在(1)的条件下,设F(x)=





f(x),x<1
g(x),x≥1
,对任意给定的正实数a,曲线y=F(x)上是否存在两点P、Q,使得△POQ是以O(O为坐标原点)为直角顶点的直角三角形,且此三角形斜边中点在y轴上?请说明理由.
题型:不详难度:| 查看答案
某商品每件成本5元,售价14元,每星期卖出75件.如果降低价格,销售量可以增加,且每星期多卖出的商品件数m与商品单价的降低值x(单位:元,0≤x<9)的平方成正比,已知商品单价降低1元时,一星期多卖出5件.
(1)将一星期的商品销售利润y表示成x的函数;
(2)如何定价才能使一个星期的商品销售利润最大?
题型:不详难度:| 查看答案
已知x=1是函数f(x)=x3-ax(a为参数)的一个极值点.
(1)求a的值;
(2)求x∈[0,2]时,函数f(x)的最大值与最小值.
题型:不详难度:| 查看答案
一出租车每小时耗油的费用与其车速的立方成正比,当车速为80km/h时,该车耗油的费用为8元/h,其他费用为12元/h.甲乙两地的公路里程为160km,在不考虑其他因素的前提下,为了使该车开往乙地的总费用最低,该车的车速应当确定为多少公里/小时?
题型:不详难度:| 查看答案
设函数f(x)=
1
2
x2ex

(1)求该函数的单调区间;
(2)若当x∈[-2,2]时,不等式f(x)<m恒成立,求实数m的取值范围.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.