当前位置:高中试题 > 数学试题 > 函数极值与最值 > 已知函数f(x)=ax3+bx+c在x=2处取得极值为c=16.(1)求a、b的值;(2)若f(x)有极大值28,求f(x)在[-3,3]上的最大值....
题目
题型:不详难度:来源:
已知函数f(x)=ax3+bx+c在x=2处取得极值为c=16.
(1)求a、b的值;
(2)若f(x)有极大值28,求f(x)在[-3,3]上的最大值.
答案
(1)因为f(x)=ax3+bx+c,故f′(x)=3ax2+b,
由于f(x)在点x=2处取得极值,故有





f′(2)=0
f(2)=c-16
,即





12a+b=0
8a+2b+c=c-16

化简得





12a+b=0
4a+b=-8
,解得





a=1
b=-12

(2)由(1)知f(x)=x3-12x+c,f′(x)=3x2-12,
令f′(x)=0,得x=2或x=-2,
当x∈(-∞,-2)时,f′(x)>0,f(x)在∈(-∞,-2)上为增函数;当x∈(-2,2)时,f′(x)<0,f(x)在(-2,2)上为减函数;
当x∈(2,+∞)时,f′(x)>0,f(x)在(2,+∞)上为增函数.
由此可知f(x)在x=-2处取得极大值f(-2)=16+c,f(x)在x=2处取得极小值f(2)=-16+c.
由题意知16+c=28,解得c=12.此时,f(-3)=21,f(3)=3,f(2)=-4,
所以f(x)在[-3,3]上的最大值为28.
核心考点
试题【已知函数f(x)=ax3+bx+c在x=2处取得极值为c=16.(1)求a、b的值;(2)若f(x)有极大值28,求f(x)在[-3,3]上的最大值.】;主要考察你对函数极值与最值等知识点的理解。[详细]
举一反三
已知函数f(x)=
1
3
x3+
1-a
2
x2-ax-a,x∈R,其中a>0.
(1)求函数f(x)的单调区间;
(2)若函数f(x)在区间(-2,0)内恰有两个零点,求a的取值范围;
(3)当a=1时,设函数f(x)在区间[t,t+3]上的最大值为M(t),最小值为m(t).记g(t)=M(t)-m(t),求函数g(t)在区间[-3,-1]上的最小值.
题型:不详难度:| 查看答案
已知函数f(x)=x3+3ax-1,g(x)=f′(x)-ax-5,其中f′(x)是的f(x)的导函数.
(Ⅰ)对满足-1≤a≤1的一切a的值,都有g(x)<0,求实数x的取值范围;
(Ⅱ)设a=-m2,当实数m在什么范围内变化时,函数y=f(x)的图象与直线y=3只有一个公共点.
题型:不详难度:| 查看答案
为改善行人过马路难的问题,市政府决定在如图所示的矩形区域ABCD(AB=60米,AD=104米)内修建一座过街天桥,天桥的高GM与HN均为4


3
米,∠GEM=∠HFN=
π
6
,AE,EG,HF,FC的造价均为每米1万元,GH的造价为每米2万元,设MN与AB所成的角为α(α∈[0,
π
4
]),天桥的总造价(由AE,EG,GH,HF,FC五段构成,GM与HN忽略不计)为W万元.
(1)试用α表示GH的长;
(2)求W关于α的函数关系式;
(3)求W的最小值及相应的角α.
题型:不详难度:| 查看答案
函数y=3x-x3在(0,+∞)上(  )
A.有最大值2B.有最小值2C.有最小值-2D.有最大值-2
题型:不详难度:| 查看答案
已知函数f(x)=lnx-
a
x

(Ⅰ)若a>0,试判断f(x)在定义域内的单调性;
(Ⅱ)若f(x)在[1,e]上的最小值为
3
2
,求a的值;
(Ⅲ)若f(x)<x2在(1,+∞)上恒成立,求a的取值范围.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.