题目
题型:期末题难度:来源:
(1)求a、b的值;
(2)若对x∈[,4]时,f(x)>c恒成立,求c的取值范围.
答案
∵f(x)在x=﹣1与x=处取得极值,∴f′(﹣1)=0,f′()=0,
即解得∴所求a、b的值分别为1、﹣1.
(2)由(1)得f′(x)=2﹣+=(2x2+x﹣1)=(2x﹣1)(x+1).
∴当x∈[,]时,f′(x)<0;当x∈[,4]时,f′(x)>0.
∴f()是f(x)在[,4]上的极小值.
又∵只有一个极小值,∴f(x)min=f()=3﹣ln2.
∵f(x)>c恒成立,∴c<f(x)min=3﹣ln2.
∴c的取值范围为c<3﹣ln2.
核心考点
试题【已知f(x)=2ax﹣+lnx在x=﹣1,x=处取得极值.(1)求a、b的值;(2)若对x∈[,4]时,f(x)>c恒成立,求c的取值范围.】;主要考察你对函数极值与最值等知识点的理解。[详细]
举一反三
(1)当a=1时,求函数f(x)的极值.
(2)若函数f(x)在区间(0,1)上是单调增函数,求实数a的取值范围.
(1)求数列{xn}。
(2)设{xn}的前n项和为Sn,求sinSn。
B.导函数y=f′(x)在x=x2处有极大值
C.函数y=f(x)在x=x3处有极小值
D.函数y=f(x)在x=x4处有极小值
最新试题
- 1—Why did you vote for Maggie?—Because she is very __________
- 2下列各句中“乃”字与例句中的“乃”字意义和用法相同的一项是( )今少卿乃教以推贤进士A.乃有所不得已也B.今其智乃
- 3大气中的氧气主要来自植物的[ ]A.光合作用 B.呼吸作用 C.蒸腾作用 D.吸收作用
- 4恩格斯对一部著作的评价是:“……至今还从来没有过这样大规模地证明自然界的历史发展的尝试,而且还做得这样成功。”列宁评价这
- 5美国人口普查局近日宣布,在东部时间2006年10月17日早晨7点46分,美国人口总数将突破三亿大关,这是美国人口史上具有
- 6依次填入下列句子中的词语,恰当的一组是( ) ①记者从最高人民法院获悉,由最高法院近日核准死刑的丁广庆等6名毒贩,2
- 7斯达尔夫人猛烈抨击矫揉造作的沙龙文学和妨碍创作自由的法则,她提出“用我们自己的感情感动我们自己”。下列中外文体或作品中符
- 8John, look at the time. ____ you play the piano at such a la
- 9右面的程序框图输出的S值是 ( )A.2010B.C.D.3
- 10有一个不透明的袋子,装有4个完全相同的小球,球上分别编有数字1,2,3,4,(1)若逐个不放回取球两次,求第一次取到球的
热门考点
- 1— The head teacher said we had only three days to finish the
- 2下列国家与其重要物产的组合,正确的是( )A.缅甸--小麦、稻米B.印度尼西亚--椰子、马尼拉麻C.菲律宾--锡、石油
- 3How I wish I ___________ you ___________ there, too yesterda
- 4下列是非典时期10个同学的体温测量结果,以36.9为标准体温,请用正负数的形式表示这些同学的体温与标准体温之间的关系。(
- 5下列属于恒温动物的是 ( )A.扬子鳄B.大象C.蚯蚓D.蝗虫
- 6跳高运动员从地面跳起,这是由于( )A.运动员给地面的压力等于运动员受的重力B.地面给运动员的支持力大于运动员给地面的
- 7设函数f(x)=ax2+bx+c,且f(1)=-,3a>2c>2b,求证:(1)a>0,且-3<<-;(2)函数f(x)
- 8Teaching and learning are parts of the same educational expe
- 9最近你就高二模拟考试该偏难还是该偏易这个问题进行了一次调查。结合下表内容,用英语写一篇短文,介绍有关调查情况,并发表自己
- 10已知:a、b、c分别是△ABC的∠A、∠B、∠C的对边(a>b).二次函数y=(x-2a)x-2b(x-a)+c2的图象