当前位置:高中试题 > 数学试题 > 函数极值与最值 > 已知函数f(x)=13x3+ax2-bx+1(x∈R,a,b为实数)有极值,且在x=1处的切线与直线x-y+1=0平行.(Ⅰ)求实数a的取值范围;(Ⅱ)是否存在...
题目
题型:宜宾一模难度:来源:
已知函数f(x)=
1
3
x3+ax2-bx+1(x∈R,a,b为实数)有极值,且在x=1处的切线与直线x-y+1=0平行.
(Ⅰ)求实数a的取值范围;
(Ⅱ)是否存在实数a,使得函数f(x)的极小值为1,若存在,求出实数a的值;若不存在,请说明理由;
(Ⅲ)设函数g(x)=
f(x)-2ax+b-1
x
-2lnx,试判断函数g(x)在(1,+∞)上的符号,并证明:lnn+
1
2
(1+
1
n
)≤
n


i-1
1
i
(n∈N*).
答案
(Ⅰ)∵f′(x)=x2+2ax-b,∴f′(1)=1+2a-b,
又因为函数在x=1处的切线与直线x-y+1=0平行,所以在x=1处的切线的斜率等于1,∴f′(1)=1∴b=2a①
∵f(x)有极值,故方程f′(x)=x2+2ax-b=0有两个不等实根∴△=4a2+4b>0∴a2+b>0②
由①.②可得,a2+2a>0∴a<-2或a>0
故实数a的取值范围是a∈(-∞,-2)∪(0,+∞)
((Ⅱ)存在a=-
8
3
…(5分)
由(1)可知f′(x)=x2+2ax-b,令f′(x)=0∴x1=-a-


a2+2a
,x2=-a+


a2+2a


魔方格

∴f(x)极小=f(x2)=
1
3
x23+ax22-2ax2+1=1,
∴x2=0或x22+3ax2-6a=0
若x2=0,则-a+


a2+2a
=0,则a=0(舍),
若x22+3ax2-6a=0,又f′(x2)=0,∴x22+2ax2-2a=0,
∴ax2-4a=0
∵a≠0∴x2=4
∴-a+


a2+2a
=4,
∴a=-
8
3
<2∴存在实数a=-
8
3
,使得函数f(x)的极小值为1.
(Ⅲ)由g(x)=
f(x)-2ax+b-1
x
-2lnx=
x2+2ax-b-2ax+b-1
x
-2lnx=x-
1
x
-2lnx
故g′(x)=1+
1
x2
-
2
x
=
x2-2x+1
x2
=
(x-1)2
x2
>0,
则g(x)在(1,+∞)上是增函数,故g(x)>g(1)=0,
所以,g(x)在(1,+∞)上恒为正.
当n是正整数时,
n+1
n
>1,设x=
n+1
n
,则
g(
n+1
n
)=
n+1
n
-
n
n+1
-2ln
n+1
n

=1+
1
n
-1+
1
n+1
-2[ln(n+1)-lnn]
=
1
n
+
1
n+1
-2[ln(n+1)-lnn]>0,
1
n
+
1
n+1
>2[ln(n+1)-lnn]
上式分别取n的值为1、2、3、…、n-1(n>1)累加得:
1
1
+
1
2
)+(
1
2
+
1
3
)+(
1
3
+
1
4
)+…+
1
n-1
+
1
n

>2[ln2-ln1+ln3-ln2+ln4-ln3+…lnn-ln(n-1)]
∴1+2(
1
2
+
1
3
+
1
4
+…
1
n-1
+
1
n
>2lnn
2(1+
1
2
+
1
3
+
1
4
+…
1
n-1
+
1
n
)>2lnn+1+
1
n

∴1+
1
2
+
1
3
+
1
4
+…
1
n-1
+
1
n
)>lnn+
1
2
(1+
1
n

即lnn+
1
2
(1+
1
n
)<
n






i-1
1
i
,(n>1)
又当n=1时,lnn+
1
2
(1+
1
n
)=
n






i-1
1
i

故lnn+
1
2
(1+
1
n
)≤
n






i-1
1
i
,当且仅当n=1时取等号.
核心考点
试题【已知函数f(x)=13x3+ax2-bx+1(x∈R,a,b为实数)有极值,且在x=1处的切线与直线x-y+1=0平行.(Ⅰ)求实数a的取值范围;(Ⅱ)是否存在】;主要考察你对函数极值与最值等知识点的理解。[详细]
举一反三
函数f(x)=x3-x2+x+1在点(1,2)处的切线与函数g(x)=x2围成的图形的面积等于______.
题型:临沂一模难度:| 查看答案
已知曲线y=x2-1在x=x0点处的切线与曲线y=1-x3在x=x0处的切线互相平行,则x0的值为______
题型:不详难度:| 查看答案
已知函数f(x)=x3+2x2+x-4,g(x)=ax2+x-8(a>2).
(Ⅰ)求函数f(x)极值;
(Ⅱ)若对任意的x∈[0,+∞)都有f(x)≥g(x),求实数a的取值范围.
题型:柳州三模难度:| 查看答案
已知函数f(x)=x3-x2在x=1处切线的斜率为b,若g(x)=blnx-
a
x
,且g(x)<x2在(1,+∞)上恒成立,则实数a的取值范围是______.
题型:不详难度:| 查看答案
曲线y=
1
18
(a+
12
a
)x3-
2
a
x
在点x=1处的切线为m,在点x=0处的切线为n,则直线m与n的夹角的取值范围是(  )
A.(0,
π
6
]
B.(0,
π
3
]
C.[
π
3
π
2
)
D.[
π
3
π
2
]
题型:湖北模拟难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.